barage gyppers:alking Novies=ine ftana Cra

> BUICK 36 Miles on a Gallon

OLDSMOBILE 1300 Miles of Frec Gasoline

ENDS CARBON Without Touching the Engline

Who Else
 Wants to Save Gasoline?

WHAT ILLTNOIS CAR OWNERS SAY:
"T purchased one of your Vaporizers several weeks ago and it has proven very satisfactory, 1 am using it on my Ford Coupe and I am getting approximately $3 s$ miles per gailon of gas. Itefore 1 installed the Vaporizer the engine had a carbon knock but that has disappeared now. The motor, I find. works better in several other rebefter in
spects, ton."

Jas, T. Reynolds
1407 E. 57th St., Chicago.
"I Am getting 30 miltes on my Oakland and that's pretty good. I also drove an Oldsmobile 27,000 miles and never had my carhon removed except with a Stransky Vaexcept
porizer."
C. G. Fetto, Jackson Plaza Hotel, Chicago.
"I Installed your Vaporizer on my Cadiltac, tried it out and found that it is a wonderful patent. I get three more miles on one gallon of more miles on one gallon of
gns, and the difference in my gns, and the difference
motor is surprising."
surprising."
Frank Riedinger,
Chicage. Chicago.

A ROLTH DAKOT: minn ham illucevered
 inptalled on otef two milliton eart of aviry malif. diready ofer teb thon. eamil car owners eay it bperivaces Ean
 corlom whimout lourching the englipe
addn mare whexd and power. . . ami nave an mutomiabing manount of gineey in gemellise and trigelf expenve. There I: miodlet for etevy rar, trock, trartur or
 in a frw mintuten.

This Invention to fuaned on mevis-dis. enorerell farda shout pelriblal gamoline nower that fef car onterry katw himut. Fine erample, it is maw founat thest the avernge man wastes at lumit sory to surf of bin eamolline through Impreper rolintmathon. Amal many more Inirreallag dis: moveries, ton detalle-li to mowntion brte.

Reant oe the left what ohher fer own. ers may mbint ft^{m}. Then aceppit ibe in. Tontar's marial Intmiluctory offer. He will and jou nemples to text will bout ondigarion to buy. if pea find It doesn't tho for you what it, ban diope for other
 for the few miautio gou've aprat in
thating It. Mon't ment jopmer mas. Aimply mend your name In mapan lielaw.

Men Wanted

 Intie. Clmect socypon loelow.

MARDERNCS
 AND IRTENTIONS

 erber magraise of a silentilie or mpectasical maturn.

NOVEMBER, 1928
No: 6

TABLE OF CONTENTS

SPECIAL FEATURES
What Caused the Italia Crash? 20By C. Ben Eieloon, Polar Air ExplorerIs the Garage Game a Holdup?24
By Russell Raymond Voorhees
How to Build an Airplane and Fly lt Yourself 30
By T. W. Hodgdon
Skyrocketing to Mars 52
Cheating Time on the North Atlantic 61
How the S-4 Might Have Been Rescued 102
By James Fiazer, U. S. Navy Submarine Expert
What Makes the Movies Talk? 112By Willian F. CrosbyPenniless Inventor Gets Million forPhoto Machine164By Orville H. KneenFiction by the Author of "Tarzan"
Conquest of the Moon (a Serial) 64
By Edgar Rice Burroughs
AVIATION
First Leseon in Fring 43
By Pilos Gene Shank
Plane Talk (Department) 99Conducted by Major H. H. Armold
Pionetre of the Sky 142
By Weston Farmer
Mincellampone Air Featurs
Rombing a Paper City With Sandbaga 42
Plane Carries Toarints on Side Tripe 50
Novel Startar for Airplene Engime 57
Purachute Carriea Airplane Safely to Earth 93
Hurricanee Ter Alrplanea in Wiod Tuncel 110
Rolivia, Withont Sceporta. Takee to Air 111
Plane Cotapult Savea 18 Hours Time on Ocean Voyage 124

EDITED BY
 EXPERTS

Listed below are the members of the Modern Mechanics

 board of editors, all qualified by national repute to serve as authorities. They will gladly answer questions from our readers concerning their departments. Address them in care of this magazine, Robbinsdale, Minn.
AVIATION

Majom H. H. Asnold, Former Assistant Chief, U. S. Air Service.

BOY'S WORKBENCH
A. Nexir Havh, Author of "The Boy Craftsman," ete.

RADIO

Chanles Macer Abames, Nationally known Radio Expert.

AMATEUR MOVIES

Walter D. Kenst, Ashociate Member, Society of Motion Picture Engineers.

MOTOR MECHANICS

Ray F. Kuns, Principal, Cincinnati Autompitice Trade Seheol.

MODES MAKTNG
Pencrval Mansmans, Foremost Exponent of Madel Making in Great Britain.

NATURAL HISTORY
Wrleam A. Murarle A. M., Ph. D., Former director, New York Botanical Garden.

HOUSEHOLD HELPS
Mas. C. M. Sullivan, Prominent Advocate of Household Laborsaving devices.

MAGIC

Mahmue Sinch, Oriental magician, formerly of Delhi, India.

A FAWOETT MAGAZINE
Published monthly by Fawcett Publications, $1 n c$., at 501 7th Ave. So. Minneapolis, Minnesota. Application for entry to the second elifs oi mail matter pending at the postoffice at Minrieapolis, Minnesota. W. H. Fawcett, Publisher: Roseoe Fawcett, Managing Editor; Jack Smalley, Assistant-Managing Editor. Copyright. 1928.

Ad
vertising offices at 1480 Pure Oi Building, Wabash Ave. and Wacker Drive (Phone: State 2955), Chicago, I11., and 52 Vanderbilt Ave., Reom 1713 (Phone: Vanderbilt 8490). New York City. All manuscripts should be addressed to our editorial office at Robbinsdale, Minn. Advertising forms close on the 25th of the third preceding month. Price 25 cents a copy; $\$ 2.50$ a year in the United States and possessions. Other Postal Unions, $\$ 3.00$ per year. Printed in U. S. A.

from A Practical School with Modern Equipment
 Our Inetructors and Airplanes All Licenved by U. S. Govermment

There is money for you in Aviation, if - you get thorough training NOW) Our courees will give you this training-they are taught under the direction
of U. S. Licensed Transport ['ilots and Mechanics and cover everything about planes, motors, their maintenance and construction. Everything a pilot or mechanic must know to secure a good paying position. Our equipment is new and of modern design, subject to daily U. S. Govermment Inspection.

TRAINED MEN ARE NEEDED

The traming which the Von Hoffmann student receives is the exact training which he must have to qualify for immediate positions on the ground or in the air. Our courses have been laid out with a single object in viewto give thorough training in all branches of aviationtraining that will not only enable the atudent to occure a enod paying position apon completorn of his couree but also to keep pace with the constant advenoement in aviation and eventualify lake his place amone the leaders of this ercat industry. Commerciat wiation meede men and there is an ever-incrameing demand ONLY for those who have been properly trained-Von Hofimaza givea you this training.

Thorough Instruction at Low Cost

We tench you by actual Ayine and practical instruction; no lons courme needed. We Euararte eufficient hourdin the air to make each atudent manter of his ahiph pilot it eafely and efficier:ty by himestr. No student bond required. Our ground courses give thorough instruction ta ground work and qualify yom for a position as motor and plane anechanic, riger. electrician, welder or any other Eround ponition. or you cein take the courec combinirg [round frat ruction and flying which wail asatily ynu far un induatrial, limited oim nercial or trameport pilot. The cont fo fow contide ring daily flyine and thorouthm of theoretical and ground instruction on latent modern type planea. Wright whirwing aed pther standard motora. Our bie new book "Awation amd You" (efle all the facts,

Thank You for Mentoning Modern Mechanics Fhen Writing to Advertisers

Table of Contents
 (Continued)

PRIZE CONTESTS

New Uses for Old Fords 58
Coo-Coo Contraptions Contest - . . 94
Join Modern Mechanica Model Airplane
Contest

FOR THE BOY CRAFTSMAN
Build This Puahmobile From Spare Parts - 126 By T. S. Asgaard

Bay's Workbench 128
Conducted by A. Neely Hall
How to Mate e Solitaito Boerd . . - . 128
Boat Model Eavily Made 122
Knot.Tylay Mado Eary 39
Pionie serape Male Eater Wibed 131
Making Paper Tube Plane . . . 134
By T. S. Asgaard
Toy, From Discarded Lamp Bulbs . . 149

FOR THE MOTOR CAR OWNER
Motor Mechanics - . . . - 159
Conducsed by Ray F. Kuns
Miacellaneous Automobile Features
A Carage With - Mulliow Tacke
Aure Comquert Alpine Pane . . - . . 4
Mail Bot far Motoritit 4
Robber Avto Bumper Abaorbe Sbacke 4
Boye Drive Tiny Racers 172
Laminede Jicense Plate 110
He'll Cat There Shottly $\mathbf{1 5 7}$
Shert Autumobile Marle Frem Old Parta
157
How to Pirk the Right Spark Plug for Yuur Cat . 150

MECHANICS AND INVENTIONS

Automatic Plow Does Away With Ilired Man 29
New Kinks in Science 40
Magnifies Vibrations $\mathbf{1 , 0 0 0}$ Times . . 42
Inventor Makes Propeller Driven Tricyrle . 47
Removes Metal Parriclea With Ring Magne1 48
Wire Network Frols Spagulls $\quad . \quad .49$
Rescue Boat Travels on Sea or Ice $\quad .51$
The Brass Brain 96
Blasting Icebergs With Liquid Sterl . . 97
Alarm Clock Model Is One Yaril Ilizh - 109
Important Inventions - 125
Real Gas Engine for Model Airplancs - 135
Windmill Supplies Farm With Light - . 136
Tank on Wheels for Garbage Collection - 145
Patento-Nutty or Novel? 163
Werda Deatroyed by Railway Spray Machine 168
Killing Cotton Prant Pesta With Smoke . 172

THE SCIENCE OF SPORTS
14Foot Bell Gives Swimmers Thrill - . 46
Walking on the Water New German Sport - 48
Science in Sportl 54
Science of Colf Made Easy by Movies - 92
Golf Now Played by Mechine . . . 97
Tourists Carry Swimming Pool . . . 116
Tractor Ouppulls Elephant in Tug-of-War - 157
INTERESTING FACTS
Bible Hides Druge - 47
No Waterworks in Key West . . . 109
Single Tree Furnishes Lumber for Church - 117
Human Nerve Fibers Emit Light . . 117
Deaf Hear Through Hands . . . 145
MOTOR BOATS AND SAILS
Pneumatic Boats Becoming Popular . . 50
Largest Dry Dock Starts Lang Journey - 36
Ten Dollar Boat Wing Outhoard Trophy - 5
Outboard Motor Installed Through
Hull of Boat 145

FOR AMATEUR PHOTOGRAPHERS

Fun With Films
153
Geltiog : Start is Amacear Movit- 151
Homo Morieq In Colore - 154
Kepholn Matter Provids Comedy Tourh . . . 154
Hoano Made Heflectore 15
Small Bottle ltolder for Dark Roora 153
New Camera Photographa Chicken in Ege - 111
Banks Protected by Camera . . . 124
THE LATEST IN RADIO
Drivers Get Wireless Messages - . . 118
Sparks From the Radio Editor - . - 119
Conducted by Charles Magee Adams
Radio Power From the Farm Light Plant - 121

TOOLS FOR THE HOME WORKSHOP
 Building a Bench Lathe - . . . 137
 By John Murray

Screw Holder Made From Old Coil Parts - 117
FOR THE YOUNG MAGICIAN
Amateur Magic Maker - - . - 169
Condurted by Mahmud Singh
Myatery of the Diappearing Malchen . . . 109
Vanibing King Trilt . . - . . . 176
The Overfhaing Rice Bnwin 170
Tho Leaping Coin - 17
FOR THE HOUSEWIFE
Houschold Helps - - . - . - 147
Conducted by Mrs. C. M. Sullivan
Repaintibe Antiqur* 247
Simple lar Otrinct a. 147
Handy Duat Chute Kare Mark - . . . 14t

\＄2，500 Increase As a mittern minlcef，the Income of Kinnaley How． Indi，Autuhon，N＿J．，

\＄7，200 a Year

 thonal rlav from eli，©MO
 over $\$ 7.200$ a year

；4，800 More
F，B．En䧉hardt．Chet．
 What he ralsed hlos pas

 IE rtralls No R－T A． Wifli e grati deel of his sumita
Dept．S－701．N．S．T．A．Bldg．，Chicago，Ill．

A Few Weeks－Then Bigger Pay

Rowland seized the opportunity to qualify as a Manter salcoman，and has richly profited by it．He now reporis an increase of $\$ 2500$ in his pay，and his future possilatif． ties are unlimited．Some of his former friendes perhaps say he was＂Iucky．＂Ile was．But his＂luck＂lay in bis decision to cast bis lot with the N．S．T．A．Thousand of other men have been simitarly＂tucky．＂Some report increases ranging up to 900% ．They have forgotten the days when they were catught in the rut－but they never firget ，hat they owe a great part of their awiovis fis X．S，T，A．thiming．

National Salegmen＇s Training Asseciation

f．O．IIs lloman，Roswell． Yew Meri，was h farmipr． Hie wanted to be walex． men and N．S．T．A． bulped him．Now in entic i．tin earntagi ont s70e

Send fcr TEis FREE BOOK

You may have doubss in your own minn about how calesmanship can help you to solve your own probleri．If so．we cannot urge sou too strongly to read the same fascinating messanc that ingpired Rowland，Share，Englehardt，and lin tbousands of others who took this remarkaile short cut to auccess．It we were asking twin et thret dollart a copy for＂Modern Salesmansling＂
gou might hesitate．But it is now FMEF：Ser you might hesitate．But it is now FREF：Set
tof yourself what salesmanshis has dine for of hers－－and what the National Salesmen＂s Training Assmciation stands reads to do for youn No matter what your present thoughts on selling are，＂Modern Salesmansho＂will sive you a new inaitht into this fascinating and higrily－paid profes． bions．Bail the coutwon for your Free cony Arat？

Mationel Calosmon＇a Trainlas Asta． Dept．太－rot．S．日，T．A，Blde．． Chicsgo， 11.
Without coat or obligation I will accept copy of your book，＂Morlern Sitemanaikip，＂ and details of your Systetn of Traininie and Frie Employment Service．

101 NTW WAYS TO $\$ 1$ to 7 mov Howr!

 Ineodn Ave. Chimen
Men-5ell Itroy New Finin Finier haits

 Men seb wown New nituentiopalin:

 Furedemand crutnt r rea Pepthta h chode than. I Fpt 26410 , I'lruant Fill, (h)lo.

 2. 1 KIne 230 tid Wells, Chleago.

Storele Noed Tralmed Executives. Na: ton-widd docnhtid for trained men and Womsia, pent coperfence unnecesaary, We irill yna by thall and put you in touch piartinilart Lewls Hotel Tratning Schools, Fistho HC - FB . Washington, D. C,
liffe alat comirsesp peen mien me

 (aturtanted 7 monthi Wo thern pute.

 Cirtorarefi, OMME
Agrentínatiditenverise our inode oins isititute free nampiey io eommacoers
 Clectinaty, 0

to ptinderitarlve of charagetr. Taly ore

 fin inmio chemt, Hationn, Mry

 vear hur men, Fimen, calliros. Amoring

 Cn, ina tainti, Itey (Yty. Mlet.

 we Cemma wlvasfed dintly Puelut fratz VA, Smintinion
 Bhat winer, $\}$ to to sico thivir operstin -strwialty Condykartory

 Mabeline hocfore Konmentini azclos

 Coodis Anortinent at in es, with 2 piere
 Mea, Enter Il.S Mater

 Monal Xmes Cercla end Pur Amernints Unequalled Welue firhent Commine nuss,

 fartel by ber ntilative ferv.

 lotted. Full infrimost lum fres Marcelmawes.

 hnow monderhal mep comsfort wit Nift, wopmes rubler rentin fivi, reinevis artios

 Makp ily a day enaliberali bonaty anif-
 fallotery Cocaminedone prad dally 100 Cheincoperience! Wríe jnoser, Tallertys
 ras acter zou withoue dover, Yepr
 herilv, 1217 M Itmadwis. N Y,
 Svisact Frot fata Kit! The rig Com part, I hot $1 \cdot 1.18$, Fort whyn, IDA

 Fotrath. Parfumes-Tollet Qem ervertfrim fil fanmily. Mf

Crnadg Con
 fot rim. Gusimntend qualitraly pripen of
 Aluse
Nip levention? रesp phomp anarmer Mr. frovi shoritn end tindit Prempe
 Lismplo free, Keverlinot, (ing
Men चhoillie to trovel. Wouk momentis

 oupligeally low prich, Hish ooctinn
 timir ilg masis op, Mefin Cos 2N2 North Weter, Rocheter, N_{2} Y

 Fivertion 00 sis i har ton, Chienn. Sed Candiz Epecitituet to Staces il
 Monelis every ditay, Than
II L E "Cyoper it' \quad miring wheelv facinats
 ypurts. in
co dint beln made by sur Neckwear

Thank You for Mensioning Modern Mechanics When Writing to Advertisers

 Dape. FCII, if Whames nempor dairy poariad and ohoetict new tiventiget shat pevents
 019 Oets Par, North windhem, Comn.
Agests earn bjumecy toking bijer

 ples turalabed the Nellood Importing C 0 . Dept. Li9, 873 Drond way, New Yort City: Aeptet 1 mometh. Write orders for tore tine cuaranteed hodery ower thom. 126 anyle solon. Fine miton dilly. Auto furnehed. Fine its bof
 Intt Blatery Co. Dert ans3, Griminuld, or. Cet Oner Free Somple Cear-Toller Ar-
 Byets Ma.
 termy at macer.
 full time exr, aciling outift the. Bgward Fhirts. 1212 Yan Burem, Fmo. 27 chenen.

 Extreete, Rarver + IIMr oith

 No iovise, Bend si, Hufor oomplete outht. Nulife Monograms, Hartford, Conn.
Don'e Sell for Others, Employ ARents yourself. Make your own products, Tollet Articles, Houschold Spectalties, eto, 500% pront. Valuable booklet Free. Natlona selentifle Labs-, $1929 \mathrm{~W}_{3}$ Broad, Richmond, Va.
Vearn drugless heallig et home. Interesting, very prontable profession guickly harnad ho epere tima home etindy Milboes of patienta beitim. Pructles in your

 top Fire totroduchory pourme Amerlen

 dis 269 month oreb-woth, 185.
 Comban
 engish and home furtilated ; hunt tha, trap. For dotadis, inte Norton inglitith 183 It paple Court, Denter. Colo.
Fan- Ounall for Rallway Pisil cerit.

 Candies isoper Madre Mape Evy maney, Fey stivers parts Ipa. we tewh

[^0]
Nine Years Ago this Man Piloted the First Plane Across the Atlantic

 was pilot of the NC-4, first plane to successfully cross the Atlantic. He was the first man to Ay from North to South America. He is the first and only world-famous flyer to give home-study students the bencht of his experience. Duritg the War he was a erack flying instructor for the Nary. Ife knows how to teach in the practicel way. H_{e} gives you your foundation for real succesa and a real fufure in Aviation. Get his Free Book-TO. DAY.

Do You Know

that America already bise erer l.000 airparth and landing fields in ative speratian? is comerrms are mannufacturimg planes. A coms. Ifimation sifline-sail. why framscontinental - ervice will begin *hoptly. ki , plans for rezillar trans-Atlantic pasenger limes ane cing en mpleted. Manes mang times larker thats eny eter sween are under con-
 Trasned ben are neteded to operte未ervice and sell. Tke Induntry of this Cen tury is imst begenmings? Get ahead in Aviation before AFiation Eets ahead of you!

LIEUT. WALTER HINTONfirse trans-Atlantic pilnt of then all-is ready to train YOU for Aviation. He is ready to give you the benefit of his years of flying exper: ience-more than 400,000 miles of flight, over land and sea, over jungle and civilization. He is scady to give you the benefit of his prowed abilit? io fit men for Aviation-proved in War days when the U. S. Navy cliose him for one of its crack instructors, proved today, when his students are stepping into important jobs and important futures in the Industry. He will give you yourGround-work-fight at home-for a real job in the air or on the kround.
He teaches you every inch of a plane. He slows you exactly how bad part wirls, and athy it yerk to utar winite lanyus and hundreds of photograyhas be
gives you a brass taiks knowledere of nabo cors, plane design and construction, instru. ments, theory of fight-everything. Ite shows you where and hout to ket into thershows you thocre and hore to get into thar the facts about Aviation Today-in prac: fical form fhat you can turn into CASII: Hinton's Free Book brings yuu full de tails on how to get into Aviation and bum to but yourself in line for ites richers. fiy: kest opportsmities. Tse the cuupun--NOW

Hintor's FREE Book Shows Ycu How

This look is thovisg line

Ford's Pilot Now Is Sales Puts His O.K. Manager for on Training "I gave a brief cutline of your (ourse to one of Fiurd'b hlok flyHe a ClevelandDetroit ylane. He towid the to stictis to it $25^{\text {me }} 1$ amm $^{\text {an }}$ the right stack," I. Mawek 3561 E. 100 th St.. Cleveland, Ohio.
men how to ficark Aviatiunhow to train themselves for its best johs-hum to sash ill
 6. Whether fies nats to fit or want une of the mere than 40 Big-Pay jais on the pround. get the Faets First. Hinton's book hrings shem. The cougha hrings your cops. Mail it Now?
Aviation Institute of U.S. A. Walier Hiatos. Pres wis Cumb arenus. Washington, D. C.

Push to Washington!

Walter Hinton, Pres,
22-L
Aveztion Instisute of U. S. A.,
1115 Conn. Ave., Washington, D. C.
 Tril nie how it can traim under you, riglit as home, fur a real place in Atiation.

'

Thank You for Mentioning Modern Mechanics When W'riting to Advertisers

ARE you a redblooded, daring he-man? Are you cager for a life of constant thrills, constent excitement and fascinating events? Do you crave adventurc, popularity, admiration, and the applause of great crowds? Then why not set into the Aviation Industrythe greatest adventure since time be-gan-the greatest thrill ever offered to man?

Think what Aviation offers you. Thrills such as you never had before! The praise and plaudits of the multitude. And a chance to get in on the ground floor where rewards will be enlimted!

Aviation is growing so swiftly that one can hardly leeep track of all the astonishing new developments. Airmail routes have just been extended to form a vast aerial network over the entire U. S. Airlines and airplane factories are springing op all over the country. Men like Henry Ford are investing millions in the future of commercial Aeronautics in America! The possibilities are so tremendous that they stagger imagination!

Everything is set for the greatest boom in history. The fortuncs that came out of the automobile industry and out of motion pictures will be nothing compared to the forrunes that will come out of Aviation ! There is just one thing holding it up:-lack of trained men I Even in the beginning thousands will be needed-and generously paid. The opportunities open to them cannot be overestimated. Those who qualify quiekly will find
themselves on the road to undreamed of money-success-popularity-and prominence I

Easy to Get Into Aviation

By This Home Study Method
Get into this thrilling profession at once while the ficld is new and uncrowded. Nowby a unique new. plan-yoz can quickly occure the basie truining for ate of these wonderful high ealaried jobs, at buyse, im mpar" time. Exp-ris will teach you the pecrelssive you all the inside facts that are es sential to your surcess. And, the atudy of Aviaticin is almost as fascinating sa the actual work ilself. Every lezson is chockfull of intereat-and so aboorbing that you actually forsect you are studying. But best of alt are the ultimete rewards yon are futing yourself to gain!

Band fer Fix RE Reet

Send the ecupon for our new, free book, Juat out-Opportumities in the Airplane fors. Amstry. It is vilally intereasing, reada like a romance and tella you things about this astomishing proftasion you mever even dreamed of. We offer a limited number of copies FREE. Write for yours today.
American School of Aviation Dept. 2058, 3601 Michigen Ave. =-o--- Chicason IU.
f AMRRICAM BCHOOL OF AVIATION,
(Dept. 205 3 sol lichigan Ave., Chicmgo, 111.
Withont of isation, please icad fue youz FREE Book, I Opportunitios in the Airplime fis Iusiry. Also informa: tion atiout guar Honee Stontr Cosires in Practical Ariation.
) Name Age.
Addreses
Cuy

Look What These Cooke TrainedMenareEarning

Makes 0700 tm 24

 at Home to fillea Bifflay Job!It's a shame for you to earn $\$ 15$ or $\$ 20$ or $\$ 30$ - week, when in the same nix daya as an Electrical Expert you could make $\$ 00$ to $\$ 100$ -acido ik omier-not wort half no hard. Why then remsin in the emall-pay game, in a line of worik thet oflert pochanct, no bie promotion, no bir income? Pit yournelif for a real job in the grem diectrical indurers. THIL abow you bow.
E. In Coore cmut Emplate

Be an Electrical Expert

Dayain Realo - Tinint to yourineerat. nackumo madoorea n 24 dave in Remiai Course thig antitrio bove fioto tiolear proftevery dayi you can ecowhat your truinng had done for me. FRED G. MeNABB sas Spring St,Atlanta, Ga. S70 tossoa Week
for Jeequoe "Now 1 am apecialiting in auteciectricity and battery torkon week and dm toit etting started 1 don'the Reting sartedibront

 8006 W. Colorndo Av. 2005 W. Colornco Aveitlo.

sio a Day for

 Schreek"Too myname asa reference and depend on me as a booster. The biggest thing 1ever did wananmer your ajyertuement. 1 sm aver. Esing \tan min mon nis awe hn wed to make
A. Schreck

Pboenix, Ária.
$\$ 3500$ A Year For Beckett
*When I besan with you 1 was fust a common lasborer, Eoling from one job to another, working for anthing I could get, and that want mucho Now my nalary is $83,500 \mathrm{a}_{\mathrm{a}}$ year and the Company furnithes mo with an automoblice:
C. O, BECKETT.

Tobaty eqea the ordinary Didectri-clan-tbe "screw driver" Etadis maling mogey-bie money. But it's the trined man-tho man
 pors of Electricity-the wiectrlcal ox pert-who is pieked our fo "bowar the ordin pry Klectrl chane-io bote the Bis Joblecthe jobs the pey 83,000 to 15,000 Fenf. Get in line for ons of
 rolline mow for my eanlly lewned. gulctily stomped, right-up-to-the ginatie. npare-Time llame-ntady Cuurse in iracticas Electricity.

Age or Lack of Experience

You don't have to be a College Man; you don't have to be a High school Graduate. As Chicf Engineer of the Chicago Engineering. Works, I know exactly the kind of training you need and I Will give you thrit training. My Course in Electricity is simple, thorough and complete and offers every man, regardless of age, education or previous experience. the chance to become, in a very short time, an "Electrical Ex. pert, ", able to make from $\$ 60$ to $\$ 100$ a week.
No Extra Charee for Electrical Working Outft
With me, you do practical work -at home. You start right in after your first few lessons to work at Your profession in the regular way and make extra money. in your spare time. For this you need tools, and I give them to you-5 big complete working outins, with tools, measuring latroments and a real electric motor.

FREE
BOOK

Addrese.

BATIBFACIION OR MOMET

Be gure am Ithat yorl ema beara elect tricity-w mure an I thit afler Etudylin with we. Fou, tos can get into the "bla money" clan in Eing intical work, thont it will sgree in ifical worz, thist ing to feturn overy mingle peapy pild me in tallion if, when you have inlabed my Caurse, jau aro Dot matimfied it wan the bent invertment jou ever mide. Apd bectit of me, fin mif cuarmbiet, stands tho Chicesa Engluepring Workr, IDe, E two milliog doliar inatitution.

Get Started Now-Mail Coupon I want to send you my Electricat Book and Proof Lessons, both Free. These cost you nothing and you'li enjoy them. Make the start today for a bright future in Electricity. Send In Coupon-NOW.
I. I. COOKE, CHIEF ENGINEER
L. L. Cooke School of Electricity

Dept. 688, Chicago, Illinois

L. I. COOLI.

Dept. stal 1150 Lavrance A핸 Cherego
Send meat once without obllger tion your big illustrated book and complete details of your Home Study Course in Electricity, including your
outat and employment service oflor. no extra
charge

Mechanical "Baggage Smasher" Tests Cartons

This mechanical "bagege smasher" is used in teating staunchness of shipping cartons.

ACALIFORNIA company has installed in its shipping department a revolving drum which subjects shipping cartons to all the knocks and jolts suffered in railroad handling. Cartons which do not survive the drubbing administered by the testing machine are not used for shipments. Savings in damage claims and delayed shipments has already repaid the expense of the machine.

SODA WATER FOR STREET SPRINKLING

Soda water is used for street sprinkling in the city of Altheide, Germany. Mineral springs in the town spout $2,000,000$ quarts of soda water every day, and city fathers voted to use this product, which otherwise would go to waste, for laying the dust of the town. Ordinary water is too erpensive for use in sprinklers.

AUNIQUE DEVICE COALS LOCOMOTIVE LOCOMOTIVE coaling station of unusual design is now in successful operation on the London, Midland \& Scottish Railway, near Willesden, England. A rotary tipping device, or cradle, receives the carload of coal and turns completely over, emptying its contents into a concrete hopper underground. The coal in the hopper is delivered to a one-ton skip by means of a feeder plate. When the skip is loaded, it is drawn up an inclined plane from the pit and automatically unloads into a 5-ton steel bunker. This is at a convenient height for discharging the coal on to engine tendors through an undercut gate and coste control. led by the firemian. There is no delay in coaling engines as they are brought into position, because of the unusual balance between the skip and the tipping device.

This elaborately counterbalanced device coals locomotive tenders on an English railway.

INFORMATION

On every eleptriosl zultfect arranged in EANDY FORMunderthese CEAPTER EIFADINGG
Electro-Therapeatics Bectric Shocka
X-Raya
Welding
Brazint
Soldering
Hentind
Motlon Picturat
RADIO
Rindla Hook-upe
Telephone
Teleitraph
Electrle Betts
Cranes
EIevetari
Premp
Elactric Ship Drive
Plectric Rullivay
Electric Vehleles
Automobil Stertiot
andLightine fiyntemil
Ifnition
Generntlon ATMrans miselon
Electric Tools
Pitme Manadement
Power Scition Plame
A品MATUREWINDENG
Armathare Repalring
A. C. Motors

Altermater Construction
Alternators
D. C. Motrors

Dymames
Medmerdc Indmetion
Wrind
Wirlind Dutarama
Electric Llethetng
stan Pleghers
Cabsis Bpitcing
Power WIring
Undentronnd Wirine
Outalde Whrine
Wirlise Pinlebed sullainga
Tente
An E.A Amontins (Switch Duplces) (Curreme Limiting) duhtmind Protec sion)
Rectifiers
Cenverters
Transformers
Power Factor Alternating Currenta
b.c.A Anerefes
(Svitchen)
(Fuses)
(Chrcule Bradera)
(Rheodtatin)
(Watt Hour Rules)
Elactro Plating
Electrolysis
Starnile Betterle
Mintrietlom
Electrical Ementy
Mechanical Enerty
Conductors
Insulators
Sthetle Blactricity Dymank EPecurlcict
 Redilo Resctilchiy Recent Appllicationg Rembr Reforvace Tades os mil mubjecta

Here is an up-to-date, quick Ready Reference. It gives complete instruction and inside information on every electrical subject. Every pointelearly erplained in plain language and diaRrams that are easily understood. Handy to use. Easy to learn from. Subjects arranged in progressive manner for the student and with complete inder which gives information instantly to professional workers. A time bavtr, money saver, and a helping hand for Engincers, Professional Electricians, Studenta and all interestcd in electrical work.

Valuable and Helpful Information

Audela Handy Book contains important and valuable wiring diagrams and calculations, machine sketches; instructions and helps on operation, maintengnce and repair; outlines showing the entire theory and all modern, practical applications of elec-

FREE EXAMINATION

For the pant 40 yeara we have rendered a opecialized oducational book eervict-We accepr poyment for our book aoly ofter fiacmination hou proven to the porchancr that the - booken tre worth the maney. Uve thil valuable woupon now, to fake adventage of our free offer in securing AUDeLs Hemy Hook of Rrastial Eiectiaity.
tricity; and a big lot of good and useful RADIO information and disgrams The use of Audels Handy Book of Practical Electricity will make you familiar with many time-saving, short-cut, profitable suggentions. As this handy, pocket-sige volume covern the entire firld of electrioity in pech conveniont form it will prove to be $\begin{aligned} & \text { a practicm dails }\end{aligned}$ helper io both reucteat and profemional warker.

Handmemely Baund In Ficilble Red Leathitr

Awdda Hawdy Book is s muspnilionen valume that you will be proud to own and carry with you. Gill Eiged. Durable real lepther biading. 1040 paga of atrong white paper. Largm Type 2000 illuatrsther and ditarama A mine of (nfotmation and a moet unumual value at oraly 51 .

 Rend pormoney. Pay nuthing to poatman. Enamire

 book mbeolvitely free. No obligation to buy unire batisfind. If you want to keep the Handy Eool, wrod $\$ 1$ within 7 dave and $\$ 1$ monthly unt11 51 ie paid

Here's a Western That Pooks a Real Punch!

FOR ten years El Diablo and his band of cut-throats had terrorized the Bald Hill country. Then Slim Martindale came riding hell-for-
leather into Sandstone and issued his six-gun challenge to the desperadoes. Did they accept? Read what happened in

Bandits of Bald Hill

 By G. W. BARRINGTON NOVEMBEERNovember the
Issue
Still on
Yale
You'll Enjoy these Two Thrilling War Tales:

SKY.HERDIN' HEINIE By FRED C PAINTON Thay called the Germun act a shy Hine bue Midget, the cowboy pilot, test out to ent hime

GOLDBRICKS, FRONT By ARTHUR GUY EMPEY
A rip-roaring yarn of the front-lines told ooly at this famoun nuthor can tall ft.

Mechanical Engineering Learn at Home

Mechanical. Engineering embraces the design, construction and operation of machines and machive tools.

Ir is a profession which offers almost unlimited opportunitics for advancement to men who combine natural mechanical ability with special technical training.

For this is the age of machinery. Almost every convenience, luxury or necessity which we enjoy today depends on machinery for its production or adaptability to our needs. Every new invention multiplies the opportunities for competent designers, builders, erecting engineers, etc.

One of the best ways to train yourself to sepure a position as a Mechanical Engineer is
through the home-study courses of the International Correspondence Schools.

These courses are especially arranged to mert the needs of the student who studies at home. The theoretical work is stated in simple and clear language and enginecring data is reduced to a form in which it is easily applied.

The courses are also particularly helpful because they are written by well-known mechanical/ engineers who have had years of practical experience in this feld.

Just mark and mail the coupon and we'lld gladly send you Free Booklets describing the I. C. S. courses in Mechanical Engineering or any other course in which you are interested.

Mail the Coupon Today for Free Booklet
INTERNATIONAL CORRESPONDENCE SCHOOLS, Box 2316, Scranton, Penna.
"The Universal University"
Without cost or obligation, please send me one of your booklets and tell me how I can qualify for the position or In the subject before which I have marked an X:

In the NOVEMBER

The Popular Magazine of Thrilling War Tales of the Army, Navy, and Marines

Also smashing stories by

20 DPys Mrial $\begin{aligned} & \text { Yes, we will } \\ & \text { send this }\end{aligned}$ Puritone portable phonograph outfit, with 30 high grade selections, 15 double face 75 c records to your home on 30 days trial for only $\$ 1.00$ with the coupon. Use it as your own and see what a wonderful convenience it is to have a phonograph that you can carry from room to room. Use the outfit on 50 days trial. If within 30 days you decide not to keep the outfit, send it back and we'll refund your $\$ 1.00$ plus all transportation charges.
 Heve paid-coly $\$ 26.85$. Thinit of It, a first-clan high arade phonomaph, and l5 high grade up to-date double lace record: - (30 erelectionil) a complete mutit, rendy

SendCouponNowif

Seize this opportunity on this special sale, while it lastsDLT CATATOR - htu fravishimga med swif Only $\$ 1.00$ with the coupon brings the complete outfit on 30 daya trial.

Onterlo Na.

Straus \& Schram, ment ${ }^{7738}$.

This Portable Phonograph plays any mile ar 10 : playa two ten-inch records with one winding. Weighs onily 17 pounds Comes in waterprool imitation leather case with hinged fid, clowea up like a small suitcase with snap locks and carrying handle (see illtutr. tion.) Memsures $14, \times 13 \times 7$? inches. Records are placedinside of tid and mecured so they will not rattle or break. Hoidg 15 records fat quiet apring motor, tone arm and reprodacer with indeatructible? phrampand widethroatior full sound volume. Outfit includes 15 dot

Fivana

MaR. P B
 or Boc:

S ${ }^{4}$ inperin
Nusil
Mintrini Er Simelt

How to Build a Million Laughs!

Take a look at this cover:

then ask your nearest newsdealer for a copy of the big, new 1929 edition of

Capt. Billy's Whiz Bang

Winter Aninual

224 pages of the Famous Whiz Bang humor, Smokehouse Poetry, Filosophy-including scores of full-page art studies, Post Cards from Paris, Boudoir Beauties, Lingerie Girls -and last but by no means least, tonsil tickling recipes for the thirsty!

Now onsale

Send in your dollar today and assure yourself of a copy. Address Cast? Eilly's Whiz Bang, Robbinsdale, Minn.

Clara Bow

The famous "It" girl reveals the
Dangers of
Vamping
Read her
Helpful Hints on Husband Hunting in the

the Popular Movie Magazine A score of other features and stories not foand in any other movie magazine, including a peppy, exclusive Paris letter, inside gossip of the Stars and studios in Hollywood and New York
NOW Twenty Cents
 Faicett Publicatipas, inc. Minpenpols, 惫irn,
Inclosin fint S1 (iabl or stampn) for which m-in SCREEN SECREIS for the next gix moaths. Also send me. frec, photos of the following three moyie stars.

Alilress

The Agge of Wechamical Marels CE age, stone age, steel age, and now-

TThe Age of Mechanical Miracles!
And we are living in the midst of it! Within a bare score of years airplanes have developed from frail-powered kites to tremendous craft that span oceans in one jump. Radio has disclosed its miracles in millions of homes, and is reaching out toward the wonders of television.

Minds must be agile to keep pace with this marvelous age. Imagination must be whetted to a fine edge to grasp it all. Even now we can glimpse new wonders that are emerging from the wizard minds of the workers in mechanics-luxurious flying hotels housed in gigantic dirigibles crossing the world's air lanes-motion pictures in colors that reproduce every hurnan sound-rockets that will fly to other planets-engines developing unheard of speeds-radios and telephones that pluck moving-pictures out of the ether.

We must keep pace with the age.
To overlook the wonders about us is to walk blindfolded through the majestic grandeur of a Grand Canyon.

Yet it is manifestly impossible to understand, appreciate, and enjoy these marvels unaided. Thousands of brilliant minds are working out problems, inventions, discoveries all unintelligible to the mind that is trained along other lines.

We need interpreters to explain the swift changes about us. We want to know the why of things without spending a lifetime in delving at intricate sciences.

That is why Modern Mechanics Magazine has been published. It is your interpreter-your teacher, in the task of keeping abreast of the age you are living in.

A board of experts in a dozen great branches of mechanics are the editors. Each a :pecialist, he translates the language of his profession into univ .. al speech. Your information must be authentic. Only experts can give ungarbled facts.

Fiction of high calibre will entertain you-and stimulate the imagination, opening your mind to new ideas, preparing it for the task of grasping truths more unbelievable than fiction itself.

So we bring you MODERN MECHANICS. We have striven earnestly to prepare a magazine for men and wornen, boys and gi:ls, that will be valued as a mentor, enjoyed as a playmate, arid consulted as a guide along the new trails that are being blazed in human progress,

What Caused the

The Italia moored at Spitzbergen before the fatal Polar dash. --M G M.

Abstract

Lieutenant Eielson, who was Captain Wilkins' partner in his Polar flight, advances here the probable causes of the greatest mystery crash in flying history. He will join Wilkins soon to explore the South Pole by air.

WHAT caused the fatal disaster to Col. Uimberto Nobile's Italia expedition? Why could not the dirigible navigate the polar air? And what was the fate of Dr. Finn Malmgren, Swedish acientist?

These questions have never been satisfactorily answered for the millions who were interested in the venture which cost the lives of so many noted polar explorers. When the crew of the Italia. giant dirigible whose arctic trip was sponsored by Mussolini, was wrecked in the ice wastes north of Foyn Island, her survivors when rescued maintained the utmost secrecy as to the cause of the disaster. Their silence has heightened interest in the unexplained mechanical difficulties which might have been responaible for the tragedy. From experience gained in arctic flying I think I can shed some light on their problems.

I have found that difficulties due to cold
weather alone are easily overcome. Much is heard in the press about ice forming on the wings of airplanes and on the hulls of airships. It is thought by many that this is what forced the Italia down. Personally, I do not think this was the major cause of the accident.

Ice will form only when rain or sleet falls while there is a temperature in the lower altitude a little below freezing. Then, when rain hils the wings, it will freeze immediately. The exploratory flying which Sir Hubert Wilkins and I have done in the arctic during the past three years proved that the temperature is ustally too cold for ice to form on the machine.

Furthermore, the ice theory has been advanced with such vagueness that I question if it is the primary reason. Ice forms gradually. It seems to me that we would have heard stories of frantic throwing off of

Italia Crash? ${ }^{\text {s.c. bambanan }}$

 merely said that on the morning of May 25, after having circled the pole, and while on a return flight to the base at Kings Bay, Spitzbergen, that the ship was found to be sinking rapidly. The crash came before the crew was fully warned, wiping off the conIrol gondola and spilling the men on the ice, while six unfortunates, inside the bag. drifted away. The rest were rescued, as the world already knows.

IT IS possible that a contributing cause of the trouble might have been ine difficulty of keeping the engines warm, thus lowering their horsepower and limiting the controllability of the rudders and elevators. At best the ship had a top speed of but

Snapped at the same time, this was the first photo to reach the outside world, being transmitted by telegraph to America. Note Nobile's red tent and collapsible boatt.

53 miles an hour. This was low-too low for work in windy regions such as the arctic. Should the engines have become less powerful due to cold weather the effect of the control mechanisms, which depend on air resistance, would have been greatly lessened. The dirigible is like the airplane in this respect.
This slowing of the engines is no joke. Capt. Wilkins and I had difficulties keeping our engines warm while in the air. On our flight across the arctic ocean this year in a
temperature of fortyeight below zero (Fahrenheit) our engine temperature would go no low that the engine would sputter and miss.

This was in spite of the fact that our enpine was bound with asthestos and shiclded from the wind better than any engine that I have ever sem. And. what makes this motor-lowing arrument regarding the Italia more interecting and plateithe, we on our Alaska to Spitzbergen Alaght experienced no trouble until we had been in the air from fise to seren hours. in temperatures around forly below. Thes same might have happroed to the Italian diriquitle.

I soppose that at least thirty times on our 2,200 . mile hop I had to advance the throttle full and climb, stecply to warm the motor. After rach rlimb I would side-alip down to a reasonable altitude and then fly along for half an hour until the temperature had gone down again. Then I would have to repeat the performance. This, by the way, was very uneconomical on our gas supply. We used over seventeen gallons of gas an hour, whereas the trans-Atlantic fliers using the same kind of engine, consumed around cleven. Some manufacturer should design a system of controlling while in flight the temperature of air cooled engines in any range of temperature. Such a system might have altered the fate of the Lialia.

ANOTHER thing which might have contributed more to the falal crash than any one other, is, I believe, the fact that they were away from the base for a period long enough to have thrown their altimeter off.

Consider the fact that an altimeter is but an ordinary aneroid barometer graduated to read in feet, instead of inches.

As the altitude rises, the pressure of the air becomes less. This diminution in pressure as the height increases is the reason that a harometer may be graduated to read in feet and tell with reasonable accuracy how high an airship or plane is fying. The dial is set to read zero at the ground before the flight is made. If it were not, the read-
ing would not be accurate, for the barometer pressure at the ground varies greatly from day to day.

After being set at zero, the altimeter would accurately record height as long as the barometric pressure remained the same. However, on the flight of the /halia. Kings Bay was left behind in fair weather, which is the same as saying high barometric air pressure existed when the altimeter was adjusted. At the pole weather conditions changed. Storms were encountered on the way home. It is possilile that the altimeter adjustments could not l_{m} accurately made and consequently might have been out of line with achual pressure conditions at the time of return. The barometer raighi have read 500 feat more altitude than actua!'y was under the gondola of the Italia.

Coupled with this probability, bear in mind two other things. One of these is Nobile's desire to fly low to make observations. On the trip of the dirigible Norge across the route Capt. Wilkins and I flew last winter, Amundsen and Lincoln Ellsworth continually remonstrated with Nobile at the low altitude he was maintaining. Finally, in desperation, it developed later, Ellsworth tore Nobile from the controls and took the wheel of the Norge himself, climbing the ship to a safer altitude. This penchant for flying low, coupled with the fact that the barometer might have been off key as was the case in so many of the cross mountain air-mail flights which ended by plane crashes against the faces of the mountains, might have been responsible for the Italia flying in extreme low altitude, bliscfally unaware of the fact.

Then, being caught in one of the currents of air which move up and down in almost vertical direction over the fields of hum. mock ice, the Italia probably was carried downward like a fish in a stream of water, crashing before ballast could be thrown out. This, coupled with the well-known fact that altimeters must be adjusted in relation to

Lt. Ben Eielson, author of this article, and Capt. George Wilkins, before taking off from
Point Barrow for Spitzbergen on their flight over Polar regions where Italia was lost.
true ground pressure to be accurate, may have caused the disaster.

IT HAS been pointed out that dirigibles are extremely sensitive to weight changes. Even huge ships like the Los Angeles, when taking on passengers, do so one at a time. The ship begins to sink, ballast is dumped to compensate for the weight, and when a level keel has been reached again, more men are taken on in the same manner, and more ballast dumped.
A smaller ship like the Italia would be even more sensitive to weight changes. If the temperature in the air raised or lowered a few degrees this would affect their altitude materially, due to gas expansion and contraction. If the exhaust condensers, which condense the water in the exhaust gas to compensate for the weight of the fuel burned, should go unwatched, a matter of an extra pail of water would affect the reserve of the ship by an altitude of as much as a hundred feet.

Therefore, with all these conspiring elements tending to defeat his flight, I do not
think it fair to criticise Nobile for an accident which happened in a bad storm. He was gambling with chances which he, his men, and every one else who travels in the arctic must accept. No true sportsman would cast reflection on the expedition.
As for the fate of Malmgren? It is my firm conviction Dr. Malmgren died like a hero, urging the others on, as was reported. Men in the air are an honorable lot-there is no greater free lance brotherhood of square shooters than pilots, mechanics, or crews of men who sacrifice all they have in the interests of promoting aviation.

It was no doubt a combination of low altitude flying, inaccurate altimeter, and uncontrollable downward currents which wrecked the Italia. Any of these is dangerous. Together they would defeat any man. I think that in the interest of justice it is unfair to criticise the expedition. Think rather of some of the things which might have been said should the fight have proved successful, as it so nearly was!

Is The GARAGE

By Russell Raymond Voorhees

 edge is helpless in the hands of a garage "gyp."

0WNING and operating an automobile is quite frequently the same sort of a proposition as being married-only worse-jit isn't the first cost but the upkeep that upsets the calm and quiet of an otherwise temperate life. The "gyp" car dealer and garage man puts many spikes into what should be a real pleasure-automobiling-

Take Jones as an example. Jones is an ofice man with more knowledge of mathematics than mechanica. He saved up enough to buy a used car and set out one Saturday afternoon to buy his automobile. He visited several used car dealers but didn't find exactly what he wanted.
"Cap," volunteered one of the dealers as he was about to leave, "I think I can get you a real car for almost a song. I sold a man a car a month ago and he can't pay the notes. It's a 1926 model sedan and a dandy. Will stand you only 3195 cash. I will drive around and get you about five
o'clock and show you what the car will do."
Promptly at five o'clock the "gyp" tooted his horn and Jones dashed to the door. The "gyp" sat at the wheel of the car.
"Cap, you're in luck," miled the dealer to Jones as he and his wife came out to take a ride in the car. "Hop in and we'll see how she runs."

He mtepped on the starter. The motor sounded good. The dealer shifted gears quietly. The engine purred and scemed to be full of pep. The clutch and tranamission were almost soundless.

Jones decided to huy the car. The "gyp" bad driven right in front of a notary's home and so they went in and completed the sale. The dealer took a street car home with his \$195. Jones and his wife filled the car with gas and oil and decided to drive around until dark in their new purchase.

Two hours later Jones and his wife rattled back home. The car was running,

Game a HOLDUP?

W HAT do you know about the tricks used by unscrupulous garage men in fleecing the motoring public? If you own a car or expect to own one, you are vitally concerned in this exposure of the garage crook's methods. Mr. Voorhees has written authoritatively of the pitfalls that beset the unwary motorist.

lut the body seemed to emit ten thousand different kinds of rattles and noises. And the motor had lost some of its pep; it was overheating. The transmission was groaning. The clutch slipped when changing gear. Everything seemed to be going wrong. Jones put her in the back yard and dropped around to a car dealer friend of his the next morning. The friend came back with Jones, and looked over the buy of the day before.

Tricks of the "Gyp"

"You're gyped, Jones, and you're gyped badly," said the car dealer friend. "In the
first place this is a 1922 model instead of a 1926. All those squeaks you now hear were in it when you bought the car but the man who sold it to you squirted heavy engine oil in all the places and then wiped the outside of. That stopped the noise long enough for him to demonstrate and sell it to you. The lining on your clutch is worn, but he has put some sand on it which made it grip for a time.

He doped the gasoline with ether to give pep to the motor. It's an old trick. About three ounces to five gallons of gas makes a racer of a piece of junk. When you put your own gas into the car you diluted the

Tricks Played on Used Car Buyers

mixture so that there wasn't much pep producing ether left. The water circulation is faulty and your motor is heating. The motometer doesn't show it, I know, but the bottom has been knocked off so that heat won't register.
"The 'gyp' put extra heavy oil in the motor to help it to run smooth. Your oil reduced it considerably in consistency and took away some of the smoothness you noticed when the 'gyp' started out.
And I'll bet you'll find some ground cork or sawdust mixed with heavy oil in the tranamission to take out the noise there. II's an old trick of 'gyps.' If there is a worn pinion ring gear there the mixture makes it sound like a new one for about iwenty miles"
Jones went hack to the office Monday a wiser but poorer man.

Many practices of crooked dealers are illegal, but some:imes they get away with their work even in court. There is the case of the "gyp" who put cotton bolls into a tranamiagion in order to take up a slap. In court he was vindicated because he set up the defense that he put the cotton bolls in because of their oil content.

There are two classes of garage men to beware of. One class is the used car dealer who fixes up pieces of junk so that they run like new cars-for a while. The other clase is the unscrupulous mechanic who tinkers with any kind of a car that is brought to him.

Williams is a case in point. Williams is - man of character in a large mid-weatern city. He is the owner of a good sized garage which for a time was managed by a man named Clari. The first few months
that Clark managed the garage, the profita ran about twice what Williams expected.
"How is it that we are making so much money, Clark?" asked Williams one day as they were going over the records.
"Oh, that's all in the way you run the garage," was Clark's reply.

Swindling the Automobilist

But this didn't satisfy Williams. He investigated and found that he was running a "gyp" garage. Much of the work that was being done was car overhauling. A car owner would bring his car in to be overhauled. Clark would take the rear end down, take out all the insides and carefully clean them and put them away. Then he would take out lot of old parts that were badly worn and well covered with grease. These would be grouped around the man's car and he would be invited to come in. Clarl would show him the worn parts and indicase what was needed to put the car in "apple pie" order. The car owner would O. K. the job. When the owner was gone, Clark would put the cleaned old parts back in and the job was finished. Clark is now out of a job and Williams has a new manager.

The traveling public, America's army of modern gypsies who go touring the country, are easy prey for the "gyp." He knows they are Iravelers and are not likely to return to his town. He is certain that he can fix them up so that they will get far enough away so that they won't come back.

A car stopped in front of a garage in the South one day after a rain. The motor was missing a bit and the motorist felt it should have attention. All the trouble was
that a connection has become loosened and one of the spark plugs was a little wet. What did the garage proprietor do?
"Your trouble is in your spark plugs," said he. "Better leave the car here for ten or fifteen minutes while I put in new spark plugs."

The motorist agreed and left the car with him. He immediately took out the old spark plugs, washed and wiped them off, painted the tops red and put them back the engine. He charged them for all new plugs and they went on their way.

Another tin-canner developed a piston slap in his old bus. Sounded too bad to let go so he stopped beside the roadsideat a "gyp's" place. The brakes were not holding like they should, the radiator leaked a bit and he needed new oil in his crank lase.

The next day the tourist got his car. The piston slap was gone, the radiator didn't leak any more, and the brakes-well he never saw brakes take hold like they did. He supposed his crank case had been filled. He later found it had been. But how?

Oatmeal Stops Leaks

The radiator leak had been atopped with a mixture of bran and oatmeal which had been dumped into the radiator. An old trick of the "gyps." Some Fuller's Earth had been rubbed on the old brake bands and that was what gave them their awful
one of the brake rods. Another "gyp" was called on to take care of a car with a rear main bearing leak. He simply removed the oil line that led to the bearing, soldered up the open end and let it go at that. What did it matter to him whether the rear main bearing got any lubrication or not?

The real "dirty work" of the "gyp" is done on the insides of the car, about which the public knows little. The tranamission is a gold mine for the crooked garage man. He has a bottomless bag of tricks. Frequently he puts a pound of powdered sulphur in the transmission before the grease is added. After this is well worked up and stuck onto the gears, the grease is added and an almost perfect running transmission is obtained-for a while.

Shackle bolts are necessary in a car, but the public knows litule about them. When they become worn and need replacing, the "gyp" drives little wooden wedges around points showing wear. All squeaks stop.

Bushings are also needed in a car, and when they are worn they should be replaced with new ones. But the "gyp" drives the old bushings out and cuts down one side with a hack saw. Then he takes a piece of shim stock, which is thin sheet brass, and winds a piece around the outside of the bushing. The old bushing is then replaced in the car, reamed out to the proper inside diameter and the job has been done at small cost-and will give small service. bite. The slap had been taken out of the pistons by knocking them out of round with a hammer. And the "gyp" had filled the crank case with oil that had been taken out of other cars and allowed to settle so that it wasn't too dirty.

The easiest way is the thing that interests the "gyp" always. He has a makeshift for almost every part of the car. Four wheel brakes? Certainly. When they get out of adjustment and don't take hold evenly all the "gyp" does to fir them is to put a kink in

Sham Overhauling Fools Motorists

A lot of trouble is caused by the "gyps" for legitimate garage men. For instance, a "gyp" will sell a car as a 1923 model. Later something goes wrong and the owner tells the garage man that it is a 1923 mode! and gets a price for the job. When the car is brought in it is found that the part purchased for the car doesn't fit. Then the serial number is sought out and it is found that the car is a 1919 model. Frequently owners of cars buy new tire rims and get the wrong one through no fault of their own except that they do not know what model car they have. When such a thing happens the car owner is likely to blame the dealer from whom he purchased the tire rim, whereas the "gyp" who mold him the car is responsible.

Ignorance Is Costly

The car owner who has picked up a few technical phrases and a little mechanical knowledge is an easy target for the "gyp." Not long ago such a man dropped into a garage and told the boss that his motor was missing and that there was carbon in it.
"I must have my motor cleaned, the carbon is making it miss," he told the proprietor, who was glad to believe him.
"I'll fix it up for you in fine shape," the "gyp" assured him, and quoted him a price of $\$ 21$ for the job.
This satisfied the owner and he went away feeling that his car would soon be back in first class condition. Later the car owner returned, got his car and drove away, after paying the $\$ 21$. Everything seemed shipshape. How long it would remain so is a question.
All the "gyp" had done was take the nuts off the cylinder head, grease up the bolts and replace them, and it in one new spark plug that had a cracked porcelain. He did rub the motor block off a bit and that made it look as if it had been thoroughly gone over.

This mechanical tyro car owner, however. is about on a par with another of the species who has just a little technical knowledge. This other man, Smilh we'll
call him, went into a "gyp's", place one day and strutted his motor knowledge.
"I have a car out front that needs attention," he majestically said. "I have driven it about 7,000 miles and it needs oversized valves and new rings, besides a little overhauling."
"I'll fix you up, Mr. Smith," said the "gyp" without even so much as the bat of an eyelash; he was a keen student of human nature and knew enough to take Smith at lis word.
The car was accordingly brought in and looked over and Smith was quoted a price of $\mathbf{\$ 1 8 5}$ for the job. The truth of the whole matter was that it was practically a new car then and in fine mechanical shape. Smith, however, had read of oversize pistons and a few other things and liked to display his superficial knowledge.

Here's what the garage man did for the 3185. He took of the head and cleaned out the carbon. Then he took the pistons that were already in the motor and stencilled on the top of each 015 , meaning $15 / 1000$ oversize. The old pistons were then put back, the head replaced and the car delivered. The "gyp" got $\$ 185$ and Smith was well pleased.
It may seem that a car owner is out of luck unless he has a dark skinned chauffeur who knows enough about cars to see to it that the garage man does his job in the way it should be done. But here, again, the car owner is sometimes cheated.
"Boss, $y^{\circ}{ }^{+}$all better give me ten gallons ${ }^{\prime}$ ' gas and another spark plug," says Sam, a colored chauffeur in a large Eastern city. to " "gyp" garage and filling station owner.
"I got ya, Sam," pipes back the "gyp."
And Sam was given ten gallons of gas and nothing else. However, he signed for fifteen gallons and a spark plug, installed. His boss paid it and didn't know the difference.
Yes, the "gyps" seem to have it. And if they haven't gotten you yet, you had better watch out because, like the goblins and the ghosts and the witches, they will get you if you don't watch out.

A Garage With a Million Tacks

THE intricate pattern of the door decorations of the double garage shown in the illustration is traced entirely in nickel-headed tacks. The design was first sketched on the doors with a pencil and the tacks were hammered in place. The large number of tacks used has caused it to be called "the garage of a million tacks."
The walls are of bright blue stucco and the wooden doors are painted in the same color, so that the bright heads of the tacks stand out with silvery brightness against the background. The parage is attached to a private residence in Beverly Hills, California, and faces directly on the street so that passers-by may catch a olimpse of this unique structure.

NEW DISEASES CAUSED BY HIGH ALTITUDE FLYING

When the airplane besomes as widely used as the automobile, air travelers will be subjected to an entirely new set of disease conditions. This is the word of physicians who have been studying the effect of high altitudes and rarefied air on the human system.

Flyers accustomed to traveling in the upper reaches of the earth's atmosphere will coentually develop an increased capacity to absorb oxygen in the lungs. The number of red blood cells will also very likely increase.

These anatomical changes will of course be a gradual evolutionary development, and it will take generations for humanity to become thoroughly acclimated to the varying conditions encountered at sea level and at 10,000 feet in the air.
Many war fliers who became accustomed to high altitude flying suffered injurious after effects. Acute alcoholism produces an effect similar to that which overtakes the rare-air flyer.

The decorations on the doors are traced with silver-headed tacks.

AUTOMATIC PLOW DOES AWAY WITH HIRED MAN

By equipping his tractor with an automatic pilot, the up-to-date farmer will be able to set his machine to work in the morning and return at nichtfall to find his field entirely plowed and his tractor waiting for him with the engine shut off. Tests recently made at Pawnee City, Oklahoma, proved the piloting device to be entirely practicable.
 ism consists of a curved steel shoe attached to the steering gear of the tractor. A coil spring of adjustable tension pulls pilot constantly toward the left against the freshcut wall of the furrow.

HOW TO BUILD

By T. W. HODGDON

An airplane that will fly well need not cost much. Here is an outline of the rudiments of airplane construction which will put the amateur flying enthusiast on the road to owning his own airplane. This article tells how a light airplane is designed.

Thin littls thip, weighing only 400 lbs , flies with a 20 horsepower motorcycle engineand it doean't use all the horsepower te that For description of such a plane read accomplaying article, the first ever written in montechnical language for the novice.

"HOW can I get into aviation?" That question is on the lips and in the minds of the eveready, progressive young Americans of today. Thousands upon thousands of young Americans realize that within twenty-five years the airplane industry will outrival even the stupendous proportions of the automobile industry of today. These young men know in their very couls that aviation is the game for them. But the greater portion of this newly airminded population is bound to be disappointed. There are only so many positions open in the aircraft manufactories-and these are not only filled-but each position has hundreds of applicants ready to step into a vacant place.
One of the oldest and best known air. plane concerns in the country recently found itself beset with a total of 25,000 applieations from ambitious young men willing to work for little or nothing in order to get a start in the aviation industry.
There's a much easier and less competi-
tive way for the young American to learn aviation from the ground up, and this isbuild your own airplane.

The Easier Way to Do It

The question naturally arises in the reader's mind-"Is it hard to build a plane-is it hard to design a plane-and if 1 do design it and build it, will it really fly?"

There is but one answer. You can design a plane, you can build it yourself at small cost-and there is one way in which you may be absolutely sure it will fly. All it takes to be sure your plane will get into the air is a little plain arithmetic and the formulae given here.
To fly, and fy successfully, a plane must meet the following requirements:

1. The lift exerted by the wings must be greater than the weight of the plane loaded for fight.
2. The power delivered from the motor must be enough so that the thrust by the propeller will overcome the resistance

$a n$ AIR PLANE and FLY IT YOURSELF

which the machine presents to the air. Resistance is mrasured in pounds, and so is thrust.
3. The plane as a whole must be balanced ahous a common renier, known as the renter of gravity-with control surfaces which, when moved, will revolve the ship about this common center. This means that the thip will be controlabis in flight.

A light plane such as deseribed above may he easily designed to fly with a motorcycle engine. By this. we do not mean to infer that an einpine might lie taken direct!y from a motorcycle frame and fitted into the enginelined of a light plane ready for ervice. The $\mathbf{l n}$ dian motorcycle engine of 72 cu . in. piston displacement will develop ap. proximately 18 hersepower at 4,500 r. p. m. in a motorcycle frame. Taken from the motorcycle, and tuned especially for airplane service, this same motor may be made to develop in the virinity of 25 horsepower with a degree of reliability which is astonishing. Just how the horsepower of the motorcycle engine may be increased will be described in full in next month's article.

Design of Light Sport Monoplane

Let us take the case of a light sport monoplane which will fy with less than 20 horsepower, carrying one person with ease. In designing this plane, we will strive for stability and low landing speed, rather than
high speed. Low landing speed is more dr. sirable from a safety sandpoins.

The very first essential for us to know before we tan use any airplane desicun formulat is the neight of the phame loaded for flipht. The weipht of the lowly of this machine will be aloout 3.50 pounds, including gas tank. seating and conlrol arrange. ments, an well as the landing gear. The monoplam wing, imeludins strus and wiring, will weight about 6.5 penund: Ther rudder and tail works will weigh alout 20 pounds, whict pives us a lotal of 235 pounds. Let us add 20 poundis for fabric covering, fitlings, etc. The motor, complete with propeller, will weigh about 125 pounds, which gives us a total empty weight of 380 pounds. These weights can be cherked up by the reader as we go further into the construction of the plane, as wood weighs a certain number of pounds per cubic fool, according to the species. Spruce wrighs 25 pounds per cubic foot, pine weighs 25 . fir weighs 23 , and ash weighs 39 pounds per cubic fool.

It is astonishingly simple to calculate the weights of the ning panel. fuselaper, and other parts, merely b) finding the volume of earh strut, longrion and wing ribs, just as a schoolboy finds the volume of the water contained in a vesael of errtatin dimensions.

Now then--the weight of the plane empty is 380 pounds, and we must add the weight
of the pilot, 160 pounds, the weight of the gas and oil, 16 pounds. This gives a total weight, loaded for /light of just 556 pounds.

How Is the Lift Obtained?

In building or designing a plane of any mort we must first select a definite wing curve to use. We will select the U. S. A.
the ground at 45 miles per hour, so we uso the formula:

WEIGHT OF PLANE

WING AREA=

COEPFICIENT \times SPEED \times SPEED
It is really quite simple to substitute weights in this formula. We know the coefficient of the wing, and we know the

27 wing curve, using the data which is listed in Figure 2 of the drawings. This is acientific data, and without it we would not be able to calculate the possibilities of the plane's actual flying. The lift coefficient for the U.S.A. 27 wing curve at 8 degrees angle of incidence is .002521 , as will be seen from the list in Fig. 2 of the drawings. Lift coeflicient is name given to a number which, when it is multiplied by the other factors entering into the design will give the desirod answer.

We select the 8 degree position because we want to get the most lift possible in leaving the ground at slow speed. What we want to know first is-the number of square feet wing area needed to take the plane off
weight of the plane, and the speed is 45 M. P. H., so, substituting and dividing, we get 556 pounds, divided by the coefficient $.002521 \times 45 \times 45$, and the answer comes out as 109.01 square feet of wing area needed to fly the ship at 45 miles per hour. Let us figure high, and call it 110 square feet of wing needed.

Next, let us determine the size of our plane. Cood dimensions are as follows:
Wing span $\ldots \ldots25$ feet
Cord of wing (width) 4 feet 4 in.
Overall length $\ldots \ldots \ldots . . .15$ feet
Now that we have the sizes determined, let us look at the assembly drawings in Figure 1. As you will see-this is a parasol type monoplane, with the wing above
the body. This design is noted for its trength with light weight, economy of construction, and most of all for its stability in Hight. Let us now figure the power needed to fy this monoplane. Note that we are hasing all calculations on a take-off speed If 45 miles per hour with the wing set at an angle of 8 degrees to the air. Actually, the wing is at 3 degrees with the fusplage.

The formula for power required is:

Horsepower Needed=
 Resistance \times Speed 375

Now before we can use this formula we must determine the registance which the plane presents to the air at 45 miles per hour. This is done hy using the following formula with the data we have in the lists in Figure?
K is a shape co-efficient determined from wind tunnel tests, listed in Figure 2 of the drawings. Area as referred to above is the cross section area as shown in the frontal drawings in Figure 2.

First let us use the above formula in determining the wing resistance. Consulting the list of coefficients, we find that the K for the U. S. A. 27 wing curve at 8 degrees is .0001534 , and we know that we have 110 square feet of wing area. Hence, rubstituting in the formula we get: . 0001534 $\times 15 \times 45$ which equals 34.16 pounds. We must find the resistance of the various other pieces of the structure and add them all up to get the total resistance.

RESISTANCE $=K$ (Coefficient) \times

SPEED \times SPEED \times AREA

To Figure the Fuselage Resistance

Now let us determine the resistance of the fuselage, landing gear, struts and tail surfaces. Looking at the list again we find that the K for fuselage shapes is .00120 and by looking at the frontal area drawings, wr see that the area is about 6 square feet. Hence the resistance figures up at $.00120 x$ $6 \times 45 \times 45$ or 14.5 pounds.

It is easily possible to find the resintance
of all the other items exactly as we found this one, so we will not go into further calculations here. For more information on the methods to use in determining the resistance of the various parts of an airplane, see the textbook of military airplanes, "Military Airplanes" by Grover C. Locning. This textbook is a masterpiece on elementary aircraft design, and constitutes much forol for thoughtful study on the part of any aviation enthusiast who really desires to aquire some first hand information which is not too drep.

The resistance of the machine shown in the drawings will he as follows: Wing resist-
ance 35 lbs. Fuselage re-
sistance 14.5 lbs . Wheels and land-
ing gear .. 2.18 lbs. Tail surfaces and struts............ 10 lbs.
TOTAL RESISTANCE 61.68 lbs . It is advisable now to add at least 10% to these figures, because it will be remembered that the ship is inclined at an angle of 8 degrees for the take off, hence the resistance will be somewhat greater. Adding 10% to 61.68 lbs ., we get 67.84 lbs . as the total resistance.

We may now proceed to find out how many horsepower are actually required to fly the plane at 45 miles per hour. The formula with values in it will look as follows:

RESISTANCE (67.7) \times SPEED (45)
HORSEPOWER - $-\frac{(67) \times \text { SPEED (45) }}{375}$ 375
Multiplying and dividing this out we get: 8.11 horsepower actually required. Considerably less than nine horsepower will fly this plane then, at 45 miles per hour.

Constructing the Plane

Now that we have taken up the elementary principles of airplane design, it should be possible for anyone, with a little study, to get designs together, and make drawings or have them made from their own preliminary sketches. Of course, the designs which we have followed through in the firs part of this article are such that the plane

How a Plane Obtains Flying Lift

Follow These Formulae in Designing Your Plane
will fly, and it may be that the builder will prefer to utilize them as they are.
In constructing the plane, it is most essential to get the structure as light as possible, with the greatest of strength. After you have designs for your plane complete, and have had drawings made, the complete drawings should be submitted to a reliable engineer for stress analysis, in order that you may be sure the structure will be strong enough.

An engineer can make stress calculations and tell you if the sizes of the various memhers are strong enough to stand the strains imposed on them. Each type of airplane demands different strength in different parts, hence it is very important that you proceed to get your plane drawings inspected.

How to Construct a Fuselage

In the drawings in Figure 3 we show a grod type of modern inexpensive, easily

huilt fuselage construction. This type, known is the stick and wire type of building, is familiar to almost all light plane builders, and while it is being rapidly supplanted lin steel tubing, the welding of the steel tubing and its uncertain strength when built hy amateurs has led us to defer the building of such a fuselage until a later date. The fusplage shown in the drawings has plywood formers, ash longerons, and the thall turnbuekles are made frim motor"wole spokes and 19 gauge sheet steel. coldrilled.

In the fuselage shown, which will do for any light plane of the type under consid--ration for motorcycle power, the longeruns should be F_{4} by ${ }^{\circ} x$ indies at the bow of the ship tapering to ${ }^{-} \times$by ${ }^{3}$ inches at the stern post. The struts and engine bear--rs should be of spruce. No particular paring of dimensions should be done on such a fuselage, as there are so few structural members that the weight saved would
be inconsequential. The plywood formers are of the brand of plywood known as Haskelite, and may be secured from the Johnson Airplane Supply Company, who do a large airplane parts business at Dayton, Ohio. The wire for the turnbuckles and the nickel steel bolts may also be secured from the same source.

Another type of fuselage construction consists of framing with a Warren truss of light spruce members. These are secured to the longirons with a set of plywood gusset plates. Such a method of building up a fuselage is very cheap, hut is not so rugged as the somewhat heavier type shown in Figure 3. The fuselage in Figure 3 should not cost over $\$ 10$ to build.

A light, strong landing gear assembly is shown in the drawings. Lpright members of steel tubing, with a plate welded or bolted across the bottoms to hold the rigid axle, with diaronal wire lracing as well as bracing to front and rear. Ese wheels which can be purchased from any Aero supply

Construct elevators. rudder. etc. os shown here.

-spruce
house, but do not use wheels with less than 3 -inch tires, as these wheels will catch in ruts and will prevent easy handling on the ground.

Some Amateur Airplane Jobs

This two-cycle Meteormotor weighs but 60 pounds.

This neat little ship is a Meteorplane model of biplane type. Powered with a two-cycle fourcylinder motor she can tear along at 90 miles an hour. Her span is only 20 feet, and length 13 feet.

Pilot G. Shank, well $k n o w n$ Northwest air pilot, with his homemade plane.

The Driggs Dart flew so well with a converted Henderson motorcycle engine it won many light-plane contests.

A two-seater with a Y type engine has high performance.
,

The Myers Midget ean do 100 miles an hour with ease. It is a single seater with a twocylinder engine. The spen is only 16 feet.

Here's the homebuilt biplane Gene Shank built when but 16 yeare of age. Powered with an 11-horsepower Harley Davideon it flew very well.

Have an Engineer Analyze Your Drawings

Tail Surface, Size, Construction

In constructing the tail surfaces, construct them to dimensions which may be a urifle oversize, rathet thas undersize. Conaruct framework as shown in the drawings, with dimensions given. These tail surfaces -hould be ample for a plane of the size -hown in Figure 1.

Hinges for rudder, elevators, and ailerons may be simply and easily constructed from pieces of cold rolled rod, as shown. Horns or levers to attach control wires to are made integral with the different surtaces as shown in the sketches.

Construction of the Wing Panels

The wing panel must be constructed with the curve of each rib exactly the same, and to facilitate matters, a template must be made, as shown in the drawings. To make one of these templates, it is necessary to wecure a full size blueprint of the wing curve we selected to use-the U. S. A. 27. Iny airplane supply house will supply a hleuprint of this curve, or it may be obtained from the National Advisory Committee for Aeronautics, Washington, D. C. If the wing curve is not followed in each and every rib, the wing will not lift as it should, and you are likely to have a plane which will not fly at all. It is very necessary to have a wing which is correct.

Build the two wing spars up to fit the wo spaces in the wing curve, as shown in
the drawings. You will have to determine the actual cross section of the spars from the blueprint of the wing curve you use. It is possible to build a light, strong, spar up out of three pieces of spruce, making them up into an 1 section, glueing and nail. ing them together. The front spar should be heavier and stronger than the rear one. as it has to take about 60° i, of the load on the wing. The spars form the back bone of the wing structure, as shown in the top view of the wing panel in Figure 4 of the drawings. The ribs, built and braced as shown, may be alt built at once and then slipped on over the spars and nailed in place.

When nails are mentioned we refer to small brads about $3 / 4$ " long-never use nails any larger.

Build ailerons as shown in wing pan-l drawing.

After the ribs are in place on the spars. put the leading edge and the trailing edire in place and nail them to the ribs as shown The entire wing panel should now be well braced diagonally with wire and turi buckles. See top view of wing panel. I'u, a good grade of piano wire for this diagon. I bracing.

Steel Tube Wing Struts

The center cahane struts wich hold th. wing panel at its center above the fuselas': should be made of $3_{1}^{\prime \prime}$ steel tubing, fla: tened at the ends to take bolts. Thes:

Details of Fuselage Construction

struts attach to the four heavy fuselage uprights. See fuselage drawing. Likewise, the outrigger struts which brace the wing panel at a point several feet from their tips should be of $3 / 4$ " steel tubing. These steel tubing struts should be streamlined ty fairing as shown, and wrapped with cotton or linen airplane tape.

The wing panel should now be covered with cotton or uribleached muslin. Tack it along the leading edgc, using copper tacks, and draw it back toward the trailing edge as tightly as possible, then tark it in place and cover the bottom of the wing panel likewise. See that it is tacked to each rib, both top and bottom, at least a foot apart. Follow same procedure in covering rudder, elevators, fuselage, etc.

Now obtain some airplane dope from any airplane supply house, and apply this liquid with a good paint brush about $2^{\prime \prime}$ wide. Spread the dope evenly and not too thickly onto the entire wings, elevators, rudder, fuselage, etc. After one coat of dope, it is time for the tape. Get some scalloped airplane tape about $11 / 2^{\prime \prime}$ wide, and fasten it along the places where there are rows of
tacks. Then dope it and it will stick down in place tightly, making a neat, streamline job of all joints. This applies to the leading and trailing edges of the wing, the tops and bottoms of the ribs, and the cuiners of the fuselage also. The cloth will be drum tight after doping, and a thin coat of paint or varnish can now be applied. The wheels also may be covered to advantage.

Control Mechanism and Seat

The seat, rudder bar and control stick should be built in one unit on a pair of chassis members of spruce about $2^{\prime \prime} x 2^{\prime \prime}$, as shown in the drawings. The stick is made of steel tubing, arranged so that it will pivot in any direction. About $6^{\prime \prime}$ above the pivot, attacn a clip for the control wires, as well as to the bottom end of the stick, which should be about $6^{\prime \prime}$ below the pivot. The rudder bar may be made of steel tubing or of spruce, according to the builder's ingenuity. In all this work, bear in mind that extreme lightness with greatest of strength is necessary. Connect controls as shown in the diagram-But do not connect the controls until you have balanced the airplane a: a whole as described in the next section.

Making Sure of Correct Balance

In balancing an airplane, the center of pravity-the point about which the machine will balance-must be directly under the criter of lift. Looking at the diagram A10wing center of lift you see the airplane musunted upon a sawhorse. It may be actually balanced by this simple method,

This balancing operation must be conducted after the engine has been fitted in place, complete with propeller. Get the tank filled with gasoline, the oil tank filled, and get into place in the pilot's seat your-s-If-with the machine on a sawhorse, as shown. Now have a helper move the plane forward and backward until the plane bal. ances on the sawhorse. The point at which it halances must be directly underneath the point on the uing which is the center of lijt. The center lift for the L.S. A. wing will 'יme at a line drawn from wing tip to tip
about $35^{\prime \prime}$; to 10°; back from the leading edge. In the case of the L. S. A. 27 wing curve, with a chord of 4 feet 1 inches, such as we figured on here, the center of lift will be alout 20 inches back from the front of the wing.

If you find the wing is not in the correct place, balance the plane by moving the whole pilot's seat and control assembly backward or forward-or alter the position of the wing itself by shortening or lengthening the center struts which hold the panel above the fuselage.

This wing panel should be set at exactly 3 degrees angle of incidence, when the plane is absolutely horizontal in flying position, as it is shown in the side view. Use a protractor and a straight edge for lining this work up.

In the next issue, we will describe in detail, with the aid of drawings, just how to tune up a motorcycle engine so that it will fly a light airplane nicely. Also, we give directions for flight-testing the completed job.

Electricity from Air
Below is shown a Viennese inventor with his machine for generating electricity from the air.

These piano players aren't posing for a rattling good illustration for one of Edgar Allen Poe's grim stories. The skeletons are employed by a music achool to illustrate the round-shouldering effect of sitting on a piano stool without a back rest.

-Times, Wide World.
Imagine the embarramament of the crew of this motorboat when the heavy andbag dropped by the airplane landa on their decl! This is a new sport, with the fwooping airman trying to core hit 40

The motor of this tiny yacht is installed beneath the aft deck and exhausts through the open end of the boat. It can be attached or removed at will.

Science keeps pace with the needs of man, as shown by these latest developments from the far corners of the globe.

KINKS Science

Human minds must be agile indeed to keep abreast of the bewildering progress of science throughout the world.

This hospital bed can be changed to an invalid's chair in the twinkling of an eye, to permit the patient to ait up for a cup of tea.

This 60-foot lighthouse keeps sailors from going on the shoals of the Danish coast. Note the unusual arrangement of reflectors inside the glass-enclosed tower. The height of the lighthouse is graphically shown in comparizon with the figure of the attendant near the door.

The familiar Pathe rooster is shown here strutting his atuff in front of the sound recording device of the newest talking movie machine. He is the first talking trademark to appear on the silver screen.

The teeth of this new portable saw will cut through a log in one tenth the time required by the ordinary cross-cut. It is powered by a compressed air motor.

Bombing a Paper City With Sand Bags

A"HOUSE of cards" representing derricks and office buildings of oil fields in the near East was constructed as

* target for airplanes in a recent British aerial pageant. The picture shows a fighting plane ready to drop a sandbag on the flimsy buildings. A direct hit will cause the paper structure to collapse as if struck with a high-powered bomb. Note the ropes bracing up the chimneys and derricks.

MAGNIFIES VIBRATIONS 1,000 TIMES

A seismograph so delicate that the heat from a lighted cigarette will affect its accuracy has been installed in a specially built cellar at Fordham University, New York. The cellar is built with 18 -inch concrete walls to absorb surface vibrations and to insure constant temperature. The floor is separated from the walls, going down to bedrock, on which the instruments are mounted. Some idea of the delicacy of the new seismograph may be gained from the fact that it registers a steady vibration during a snowstorm.

Sitting in his special cellar, Father John Tynan can get an accurate record of an earthquake occurring 7,000 miles away. Earth vibrations are magnified 1,000 times. The new instrument is known as a WillipGallitzan seismograph, and is imported from Esthonia.

Contact! Here's the Giust By PILOT GENE SHANK Lesson in FLYING

Who broke the world's Loop-the-Loop Record

EVERY good flier must acquire certain knowledge of the principles of aviation before he takes to his wings. He must have a full and complete knowledge of the reason an airplane is able to fly, and he must know how an airplane is built. A pilot is never better than his knowledge of his ship.
One of the best ways in the world to acquire this knowledge is to build an airplane of your own. After having worked cut your own problems in the building of your own plane you will have a much better conception of the workings of an airplane than could be had in any other way, with the possible exception of a thorough ground school course which is usually expensive. Both ways of preparing for an air career are good; each has peculiar merits to recommend it. Bear in mind that mortality among students varies inversely with the amount of preliminary training. The greater the knowledge, the more apt the pilot is to come through his solo flight safely.

While it is not recommended that you read this and attempt to take a ship into the air, you pilots of tomorrow may profit

Few people know more about airplanes than Gene Shank, who built one when he was 16 years old, and has been flying ever since. Here he gives you authentic information on how to get your airplane off the ground - and back again safely.
by a little "chin session" and ground talk, so that you will have a pretty good idea of the things a "kaydet" goes through in getting his ship into the ozone.

In fying an airplane there are two things a student should know and drill into his head until the knowledge is a subconscious part of him. First, always keep /lying speed; second, always keep in mind what position you are in relative to the wind.
Without those two things ever in mind, you cannot safely or properly handle your plane-flying speed especially heing the greatest of these two factors. Flying speed is obtained and maintained from two sources. The thrust of the propeller is the first of these two sources, and gliding is the second. In case your primary source of speed ceases for any reason, known or unknown, the immediate thing to do is to nose the plane into a glide sufficient to maintain flying speed. Don't worry about what the trouble is before you nose her down into a glide, or your troubles will pile up and so will the ship.
With these two precautions dinned into the old noodle, you are ready to seriously entertain the notion of taking a ship aloft.

The pilot's seat in an airplane cockpit is shown in this diagratn. Various movements of stick and rudder control direction of the plane as illustrated.

The nevt precaution to take is a humbene measure designed to prolong your life, promote your health. and initiate you into the ancient order of Xative Sons From Vissouri.

It is this: Dont: take anyloody"s word that there is rnouph gas aboard. or wil or water. Check these proints yourself! Ser for yourself that the work drlegrated to merhanics is properly dotue. Sere that the plong are tight: examine the principal control wires and move the rudder har and control stick in all diremtions to make sure the ailerons and elevator- and rudder are on the job and functioning properys.

The motor should be run idly until it is thoroughly watmed and the oil is circulating at the proper pressure. Test the old mill out for revs, reading from the tachometer without whith no plane is complete, and be sure not to race the engime for more than a fen seconds when detrimining this.

During this preliminary warming up the: wheel- should be well chorked. or the wings held by men to privent the matchine from petling under way when the motor is gunted.

Where the power plant is functioning reliall, laxi to a smooth level runway with fiatd dy pround having short grass. If posesible atoid mourh ground. sift ground, or ground histing hommocks of grases. Make sure leffre finally heading into the wind that all controls arc working properly, that no planes are couning in to land or take off,
thell deliberately "give her the gun" as fast as the motor will speed up. Avoid throwing the throtile wide open all of a sudden. High compression motors last Ionger if full loads are shouldered gradually. Start off with full power directly into the wind.

When the ship has attained fair speed. which is usually within 25 to 50 feet, push the stick gently fornard. This raises the tail and at the same time prevents the ship from leaving the ground until it reaches proper flying speed.

At this point it is well to impress you with the need for pulling back gently on the stick after the ship levels off on her run along the ground. Otherwise the tendency will lee for the sitip to raise her tail, with the attendant danger of lowering the "prop" until it hits the ground.

When the machine has allained full speed on the ground, pull the stick back slowly until the wings assume the rift and take the machine off, taking care that the ailerons are in neutral position until the machine is well up in the air.

Taking off at hinh speed is always best as the machine will have atta'ned a certain amount of momentum which will enable it to land safely if the pover should fail suddenly.

As soon as the plane is under way it should be driven in a straight line at a very gradual angle of climb until a safe altitude has been reached at around a thousand feet.

Bear in mind that the possibility of the power plant conking out is ever present, and the flyer's first concern is to get altitude which can be converted into flying speed should such an accident oceur.
The plane should be at a height of at least a thousand feet before any kind of turn is attempted. This advice holds true for all save the most experienced pilots. If a turn should accidentally become necessary, nose the machine down level in order to maintain flying speed with which to negotiate the turn.
The modern airplane of good design has considerable inherent stability, and it is always better to work the controls smoothly and easily than to jerk them. The novice's one great fsult is apt to be the "hardness" on controls. Owing to the spread of a ship's wings, im. mediate response is not always had at the controls. The slower and larger the airplane is, the more time is needed for controlling it. This is one of the reasons why flying is an art-so much depends upon the judgment of the man at the stick. It is one of the rea. sons why flying cannot be learned in a five-minute hop, like a five-minute auto demonstration in which the owner learns to drive his car.
Certain precautions must be observed when landing. When you have approached sufficiently close to your landing place to be sure of reaching it on a normal glide, throttle the motor, keeping prepared to give her the gun if there is any doubt about reaching the field. Do not attempt to stretch a glide. Do not land in a cross wind if it can be helped. Always land into the wind. This exerts a braking effect on the ship and will make it easy to

P
ILOT GENE SHANK broke the world's loop-theloop record last year in St. Paul, Minnesota, with a total of 569 aerial somersaults. He also holds the endurance record for light airplanes, having refueled his Waco biplane in the air to keep it aloft 12 hours. He says, the best way to learn to fly is to build your own plane.

Modern Mechanics gives you the opportunity to learn in this fashion. After an extensive investigation of some ten of the best light planes, we arranged with the most successful of these to publish their designs. No other magazine has ever attempted publication of series of this nature, taking up both building and fying in all its phases, with complete, working plans, devised by experts.
control.
One of the most serious mistakes the novice is apt to make is gliding into the field at too flat an angle, with the attendant dangerous result that the ship is apt to lose flying specd, and settle instead of gliding as it should. Either a stall and a total washout will occur, or the ship will pancake and damage the landing gear.

All students of aviation should bear in mind that it is not possible to learn to fly by reading a book any more than it is possible to learn to ride a bicycle or learn fancy diving by reading books on those subjects. There is needed a certain co-operation of the senses to produce the required sense of balance. Nothing but guided practice under the eye of a skilled pilot will enable the aviator to fly properly.
The novice may argue that the Wrights or that Glenn Curtiss laught themselves to fly withour remembering that nothing but straightaway fights were made, and then only on days when the smoke from a cigarette went straight up into the air. It is much hetter to acquire at first hand the knowledge which has been gleaned by experience.
The control of a machine in the air is not difficult, as the pilot soon learns the necessary movements and acquires the reflexes which rnable him to fly instinctively. The landings are the most difficult thing as good ones are made only by a combination of judgment of distance and an instinctive feeling for air conditions and direction.
So this is my little "ground talk," gang. Same as I give the Kaydets who go riding with me the first time in preparation for

When your engine stops while in the air, a simple manipulation of the controls will enable you to nose down and regain flying speed.
their solo flight. I haven't presumed to teach you to fly by letting you read what I have written here for you. But if you must, go to it!
And if you should ever show up at my flying field at Robbinadale, and want
flight instruction, l'll tell you the same thing. Then we'll put a helmet and goggles on you, trundle the new Waco out onto the tarmac, and up we go!
Contact!!

Fine points of airplane piloting will be taken up by Mr. Shank in the next article in this series, which will appear in the December issue of Modern Mechanics magazine. If you want to acquire a sound understanding of the theory and practice of flight, there is no better way than to follow the articles by experts in this magazine.

14-Foot Ball Gives Swimmers Thrill

Monster floating ball used by bathers at Catalina Island, California. It is fourteen feet in diameter.

AFOURTEEN foot ball with over 100 handholes is providing much sport for Jathers at southern California beaches.

The ball is made of sheet i:on laid over a network framing of angle iron. It is, of course, hollow and very buoyant. The object is for one group of players to submerge the colors of their opponents. For this reason. the two halves of the ball are painted brilliantly in contrasting colors.

Before a game is played, the ball is partly submerged by filling it with water. This robs it of some of its tricky buoyancy, and by crawling hand over hand on the ball the more daring players lend their weight to submerging the other side. This results in much skill being developed by the players in maneuvering the ball.

It is not an uncommon sight to see fifty bathers engaged in the serious fun of submerging the colors of the opposing side. Such games often last for hours at a time.

It is impossible for any of the participants to become hurt through contact with the ball; as the outside is covered with a rubber sheeting.

Inventor Makes Propeller-Driven Tricycle

ATHREE.WHEELED vehicle constructed of airplane parts and powered by a two-cylinder motor and small propeller has lween designed by John Dacy, a young inventor of Zion City, Ill.

The rear part of the machine consists of an airplane landing gear on which is mounted the motor and propeller. In front of this is the pilot's seat, suspended from a frame of steel tubing. The lone front wheel is connected by chain and wire to the steering apparatus.

The propeller develops tremendous pushing power and gives the machine such high apeed that its owner has no fear of traffic officers.

AUTO CONQUERS ALPINE PASSES

The St. Gothard Pasa, Waterloo to many an Alpine motorist, holds no terrors for the motor sled shown in the picture. The front wheels are equipped with thin skids that support the weight of the car in passing over soft snow banks. An auxiliary skid is fastened to the front spring assembly and passes under the radiator apron, providing additional support for the weight of the motor. Power is applied through caterpillar treads of the

This motor sled is used by tourists in croseing the snow-covered passes of the Alps.
Citroen type. Nothing less than an avalanche is capable of stopping this Alpine car.

- Keyatone.

BIBLE HIDES DRUG3

Mechanical ingenuity of narcotic smugglers is constantly being tested in devising new methods of bringing their contraband goods safely into the country. The picture shows a Bible which has been hollowed out in the center to provide a hiding place for thousands of dollars worth of morphine and other opiates. The book was configcated by Internal Revenue inspectors.

REMOVES METAL PARTICLES FROM EYES WITH RING MAGNET DESIGNED IN ENGLAND

0NE of the latest developments in the field of medical science is the ring magnet. It is proving of great value in removing pieces of metal from the eye after an accident. Workers in various industries often suffer from flying pieces of metal striking the eye. To remove such small particles is often a delicate operation whose pain is greatly lessened through the use of this ingenious device. The operation shown here is being performed by Sir Richard Cruise, surgeon-oculist to the King of England and surgeon to the Royal Westminster Ophthalmic Hospital.

WALKINGON THEWATER NEW GERMAN SPORT

Waterproof "shoes" in which the wearer can walk about at will on lake or river surfaces are proving popular in many parts of Europe. The "shoes" are miniature boats of light construction, covered over and fitted with air chambers, and so designed that it is impossible for the waterwalker to capsize them.

A funnel attached to a broom handle is carried. one stick in each hand, to give the walker the necessary "thrust" and to aid him in bal. ancing.

RUBBER AUTO BUMPER Absorbs SHOCKS

These cushion bumpers absorb jolts and jars through special "ice-tong" springs.

A N AUTOMOBILE bumper made of rubber and designed to absorb the shocks of minor automobile collisions has been put on the market. The device consists of a length of solid rubber tubing attached to two "icetong" levers supported by the front spring coverings.

The picture shows the cushioning effect of the bumpers in head-on contact. The device, of course, is not efficient at excessive rates of speed, but is highly effective in absorbing everyday jolts and jars.

Wire Network Fools Seagulls

RESERVOIRS containing the water supply of a California city were becoming favorite nesting places of sea.gulls flying in from the nearby Pacific until engineers hit apon an ingenious method of sheltering the pools. Wire cables were stretched across the reservoirs, dividing them into checkerboards marked off into 50 -foot squares. The wire network proved entirely successful in
protecting the pools from sea.gulls, the birds stcering clear of water criss-crossed by the shiny wire.

Until the simple network method was devised attempts were made to drive the gulls away by shooting. An automatic exploder was installed, but it was expensive to main. tain and not so efficient as the wire cables.

City water reservoiss are protected from becoming swimaning pools for sea-gulla by stretching wire across the surface.

Plane Carries Tourists on Side Trips

The hydroplane is powered with a 320 h . p. motor and can carry five pase sengers in addition to the pilot and me-
chanic. The flying boat is carried on the stern of the steamer where it can easily be lowered into the water when desired.

PNEUMATIC BOATS BECOMING POPUஉAR

Pneumatic boats which can be folded into a small package and inflated for use when the need arises are winning popularity among sportsmen and aviators. Many flyers
who must cross large bodies of water carry such boats as a safety measure. The picture shows one of the rafts being inflated with compressed air.

Leather oarlocks for two rowers are provided. Straps hold the aars in place. The boats are so designed that when fully inflated the bow and stern rise to a point e-rbling the craft to cugh whitecaps and s. Jive a heavy sea. Its portability and extreme bouyancy are selling features.

This is the type of boat which was brought into prominence by trans-Atlantic Ayers. Byrd and others carried life-rafts similar to those shown. Such boals are of little value in the open sea during heavy weather, but are valuable for emergency service.

Rescue Boat Travels on Sea or Ice

AN ARCTIC boat designed to run both on ice and water has heen invented by Harold E. Bailey of Nashville, Tenn., for the purpose of rescuing polar parties marooned in the great ice fields. Difficulty in reaching the marooned members of the recent Nobile expedition was experienced because of the shifting ice floes with stretches of open water between them. A ship cannot cross the ice fiolds and dog sleds are helpless in navigating open water. It is its ability to travel in hoth mediums which makes Mr. Bailey's rpscue ship so adaptable for use in the far North.

In design the boat is very simple. It ronsists of a stout wooden hull reinforced hy metal strips, with spiked side wheels. The prow of the ship is fited with a steel
"saw tooth" blade which splits the pan ice. When the ice field becomes too solid for water navigation, the boat crawls up on the ice and slides along on its steel keel, propelled by the spikes, which have a bulldog grip on the ice.

The navigator sits in a glass-enclosed cabin high above the deck, where he has a clear view of the country around. A crew of half a dozen men can be accommodated in the boat. Radio antenna can be strung on deck if desired. Foghorn, compass, and other instruments are carried.

The boat is useful not only in rescue work, according to the inventor, but can also be carried by the mother ship on polar expeditions, where it is useful in making short excursions where the larger boat cannot travel.

New Metal Rivals Aluminum

ANEW metal called beryllium, extracted as a by-product of waste ores from Celdspar mines, is soon expected to rival aluminum as material for manufacturing l:ousehold utensils and motor parts. Beryllium is much harder than aluminum, yet weighs about one-third less. It is four times
as elastic as aluminum, and it resists destructive fumes which corrode most other metals.

The commonest type of beryllium ore is known as beryl, sometimes worn as a semiprecious stone.

Skyrocketing to

Rocket machines operate more efficiently in the vacuum of interstellar space than in an atmosphere. Will science be able to harness this new force for interplanetary travel?

NCIENTISTS say that in the next few months we may see the first trials of man-tarrying rockets, which will be shot off into space in an effort to land some intrepid adventurer on Venus or Mars!
Visions of a Jules Verne voyage to another planet are actually nearing realization through the lessons learned from recent rocket tests made by Fritz von Opel and Anton Raab, two Germans who have made exhaustive studies of rockets as a means of propulsion.

Through lessons learned from applying the rocket-propelling principle to the Opel rocket-propelled car, an American, Robert Condit, has conatructed an interstellar recket in which he intends to aboot himself to Venus.

This rocket is capable of carrying a man beyond the influence of the earth's gravity, it in claimed, where its opeed will carry it along the orbit on

Mars

Will Man Ever Reach the Red Planet?
which it is aimed until it reaches the gravitational influence of a nother planet. Large tubes project tailward, emitting the chemically produced gases, which by their jet propulsion shoot the rocket into the heavens.
Astronautical voyages are not a new idea. An obscure contemporary of Jules Verne, one Achille Ayraud, upon coming across notes made by an earlier scientist, proposed a trip to the moon a century ago.

This is the idea credited with furnishing Verne his theme for the story "From the Earth to the Moon."

After Jules Verne's time, when military acience had advanced to the study of ballistics, Robert Esnault Pelterie, one of the most original scientific minds of France and a noted designer of airplanes, carefully estimated the weights and forces needed to propel a rocket ship to the moon, and found the idea not only feasible technically, but projected a plan for its accomplishment before the Societe Francaise de Physique in the year 1912.

From that time to the present, one experimenter after another has made tests on various rocket-propelled devices. One May day in 1928 a rocket engine was fitted to an Opel special car at the Avus Speedway in Berlin to see what effect such a gaseous jet motor for rocket driving would have when installed on an auto.

At about the same time it was announced that the rocket propulsion principle was being applied to the airplane by Anton Raab, famous German aviator. It is rumored that Junkers, the famous Cierman plane builder, is also working on a plane which will be designed to shoot through the heavens from Europe to America, taking advantage of the rarefied atmosphere in attaining the enormous speed of 300 miles an hour while carrying a load of passengers in a hermetically sealed cabi".

In tossing a ten-pound shot or a javelin, the arms momentarily loose close to a full horsepower-that is, champions' arms do. Kaare Krogh and Vin Libby of the University of Chicago are shown at these events, in which they star.

-Ewing Galloway.
"Little Poker Face" Helen Wills whangs a ball across the net with her quarterhorsepower right arm. Here it's skill that turns the trick!

-Ewing Galloway.
 wrist muscles which are capable of doing the same amount of work as the motor which drives your washing machise, or about a quarter horsepower. This shows J. R. Hoffmea and G. J. Wolf in action. They are Yale's fencing team.

-Ewing Galloway.
A man with a sledge, by taking advantage of the lever principle can develop enough power to hill a cow. Jack Dempsey, shown here on shipboard in action with Bob Kent, once killed a yearling with a wallop over the heart with his bare fist. Some sock! 54

If ows of these Japasene natiomal wreatlers picks up his opponent, weight 180 lbe., and thrown hirn ten feet. how many foat-pounde of energy does re develop? Better than a hornepower!

-
 in
 Sports

In getting distance into a discue-throw or in tossing an opponent to the mat. strength is not everything. Scientific skill must be employed. Do you know the secrets these champions employ to win?

A tharle can swim a mile in 2 minutes. That's ateamin 1 I Arae Bore bis chark at swimming.

Springs in this device are guaranteed to put a thrill into broad jumping. They store up power and put a real kick into the ${ }^{\text {s }}$ ump.

-Ewing Galloway.
In the Icelandic "Glima," national wreatling game of Iceland, harneases are applind right at the center of gravity of the body, making it ex tremely difficult to throw an opponent and have which way he will tall.

Largest Dry Dock Starts Long Journey

- Keyntone.

The largent floating dock in the world in shown leaving London on its 8,000-mile journey to Singapore.

FOUR powerful tuge are required to handle a single mection of the largest flonting dock in the world, just built for the British Admiralty. The dock will weigh 50,000 tons when completed. It is shown otarting on ite 8,600 mile journey to Singapore, a trip which is expected to take five months to complete.

The tugs were connected to the dock by 20 -inch manila rope, used in preference to steel cable because of its greater elasticity. On its long journey the dock must pass through the Suez Canal, which is expected to afford a test of the navigator's skill because of jts narrow clearance.

Ten Dollar Boat wins Outboard Trophy

SKILLFUL seamanship in a leaky canvas boat which he rescued from the junk heap won for Capt. E. E. Dunn of St. Peteraburg, Fla., the Gondolier trophy in the recent outboard regatta at Miami.

Capt. Dunn bought his boat for \$10. It was canvas covered, full of holes and utterly unseaworthy. Liberal use of graphite, lacquer and box-wood was necessary to make it water-tight. For fifty cents Capt. Dunn rented an outboard motor, and with
this modest equipment pitted himself against some of the fastest and most coatly boats in the couniry.

Gar Wood and other noted outboard racers were forced to trail in the wake of Capt. Dunn's renovated speedster. The heats were run off in rough water and upsets were numerous, but Capt. Dunn handled his craft so skillfully that he glided over the whitecaps an easy winner.

NOVEL STARTER for AIRPLANE AIRPLANE ENGINE

 ENGINE}

-International Newsreel.
Lady Heath wetcomed home from Capetown tour. She found the self-starter helpful

ASELF-STARTER operated from the cockpit is a feature of the Britishbuilt Cirrus airplane engine which powered the Avro biplane piloted by Lady Heath on her recent solo flight from London to Capetown.
Instead of the dangerous cranking of the propeller with its ever-present danger of becoming entangled in the blade, the pilot rquipped with a Cirrus motor turns his engine over from the dashboard.
The manual starter is extremely light in weight and operates from the cockpit, just as do some cable-mechanical emergency dashboard brakes. A rope is pulled
 and the motor ticks over.

In effecting this, a simple mechanism is used. It consists of a train of two spur gears which are out of mesh until the pilot pulls the stranded wire cable leading to the device, as shown in the drawing. As the lower gear quadrant engages the upper pear, the motor is turned over. On starting, the increased speed of the upper crankshaft causes the dog to slip, allowing the spring loaded arm to swing back to normal. Then

Dangerous cranking of the propeller is eliminated by an ingenious self-starter operated from the airplane cockpit.
the upper gear settles into the dog or ratchet clutch and the operating cycle is completed.

The Cirrus is a reliable engine of high efficiency, weighing only 245 pounds. The cylinders are of composite construction, the sleeve of the cylinder proper being made of high grade grain cast iron, and the heads of an alloy of aluminum containing magnesium and copper in small proportions.

Cirrus airplane motor, with starter shown attached at right, indicated by arrow.

The valve operation is almost identical with that of the familiar American Chevrolet motor. The push rods are of the same size and are adjusted in the same manner. Valve springs are double helical to avoid total failure through breakage in the air.

Should the air tourist need repairs, they can be effected by a handy mechanic in almost any corner of the earth. The Cirrus engine is notable for its simplicity, and its dependability was amply demonstrated by Lady Heath's 8,000 -mile flight over Africa.

人ew Uses for OLD FORDS

SINCE the Ford Motor Company has ceased production on the universally known model T Ford car, millions of which are to be found in every corner of the world, many of these cars have drifted prematurely to vacant lots and garage junk heaps as an expertant public floods the Ford plant with a deluge of orderg for the successor to the old de. aign.

Does this mean that Tin ? jurie has acrved the lavt days of her utilitarian life? On the contrary!

New uses for the "caat iron wonder" are being found daily wherever a need for extremely cheap and husky power comes up. In motorboats, converted tractors, power sleds, aw rigs, pump and well drilling outfits the familiar bulk of the gasoline heart of old Tin Lizsie is seen more and more often these days. They are even being made into airplane engines!

The Ford model T motor can be bought for a price from $\$ 5$ or $\$ 10 \mathrm{up}$ to $\$ 25$, depending upon condition.
 No matter how worn, no matter how ready to "kick the bucket" the engine maj be, repairs are to be had at the usual low prices in every garage. This will be the case for many years to come, for the parts replacement business of the Ford Motor Company is a huge industry in itself. So no matter what the condition of the engine of old model T , it can be bought with the assurance that it will provide serviceable power for years
to come and can be put in running condition at a low cost.

One of the uses to which the Ford engine has been put with very satigfactory results is in the propulsion of boats. Developing 12 h. p. at 1,000 r. p. m. the engine makes a very good power plant for driving runabouts, launches and small cruisers. Placed in an eighteen foot runabout, a speed of

Rescued from a grave in the junk heap, Tin Lizzie dons working clothes and makes money for the ingenious man who thinks of new ways to use her cheap and ample power.

about eighteen miles an hour is readily obtained turning a 14 -inch diameter by 16 -inch pitch propeller wheel of three blades. A apeed of eight to ten miles has been oblained in a fairly heavy open launch of 25 fret in length using a 16 -inch diameter by 16 -inch pitch three blade propeller. Boats as large as thirty.five footers have been driven seven to eight miles an hour by the

Ford motor hooked to a lo-inch diameter by 14inch pitch wheel.

As it is a unit power plant, there is very little alteration needed to make a motorboat engine out of the Ford motor. One of the most effective ways of converting the mill from automobile to marine use is to install the motor together with the frame on the usual wooden engine heds such as are built into the boat. The illustration shows this method plainly.

A four-inch Lobee gear pump obtainable from any marine hardware house will fit the crank-yaddle bolt to perfection, and a coupling for driving it can be made by drilling the timer housing and running the shaft through on a specially made amall timer nut. This caref for the cooling water system.

Fitted with steel wheels, with tractor lugs and an extreme low gear attach. ment, many an old Tin Elizabeth is now grinding out the last hours of her existence in some truck fardener's potato patch, doing light work like harrowing, drawing the cultivator, and hauling spray outfits. If the soil is not too heavy these tractors will even do a creditable job of pulling a single bottom with easc.

As a tractor, aside from the changes mentioned, the only additional equipment needed is the belt driven type of pump, needed to circulate the water faster, thus cutting down on oil consumption.

Have you a new use for an old Ford? For all ideas published the editors of Modern Mechanics will pay five dollars-with a bonus for photos. Send in your ideas, giving full details.

As a saw rig, very little is needed in the way of additional equipment that the local blacksmith cannut make. Many builders of the type of saw outfit shown in the drawing mount their rige on a wagon, making the tilting table detachable, and the entire outfit is then a portable saw mill which can be taken from place to place to rapidly and profitably convert logs into cordwood.

The bearings shown in the drawing may be ordinary pillow blocks with babbitt bearings. The saw is generally belted to run half again as fast as the engine, or about $1,800-2,100$ r. p. m. and can be bought in two foot diameters from most any hardware store. This will give ample saw speed without overloading the engine.

Many men in the wooded farming sections of the northwest make comfortable winter livings with these saw outfits.

One enterprising Eastern schoolboy made a varuum pump as shown. rigged it on a neat steel wagon, and set about building up a vacuum cleaning service for houses in which he drives up to the curb, runs a large canvas covered tube into the basement of the home, and proceeds to load his wagon with the rubbish in the basement, cleaning up ashes, ${ }^{\text {raper, cans and coluwebs. He tops }}$ off the job by thoroughly cleaning the funace and sweeping the soot from the chimney with the suction! The entire lot of dirt is delivered into an inflated canvas sack just as is spen in a vacuum cleaner. In this case the bag is on a larger scale.

He receives $\$ 7$ for the service, which takes half a day. Ile supervises and directs the vacuum pickup, while the heart of an old Tin Lizzie does the work!

House Washing by Machine

Similar in nature is the mounting development by a Chicago man for washing houses. The ordinary house faucet or lawn hose water pressure has not enough force to separate the winter's grime from the ordinary painted surface, with the consequent result that in the springtime Mr . Average Man tries out the hose, decides the
house must be hand washed, and if $\mathrm{E}-\mathrm{a}$ not particularly observing, comes to the final conclusion that to appear neat and trim after a winter of smoke and grime his house must be painted. This costs money, and a man who drives up with a geared force pump, a set of ladders, and a long handled scrubbing brush has no trouble securing the job of washing the house, particularly as the cost of freshening the looks of the home with his method is but $\$ 25$, whereas new paint entails much muss and fuss and at least an outlay of $\mathbf{\$ 7 5}$.

With soap, brush and ladders this man quickly wets down the dirt, scrubbing loose the most obstinate deposits from cornice corners, and then, cranking up Elizabeth, he stands off with a pressure hose and rinses the dissolved smudge from the entire home, taking care not to rip up shingled or blow in windows. The paint does not suffer from this treatment, but emerges bright and glossy. Profit is said to be in the neighborhood of 810 , over and above the cost of a man's time and the soap used.

At the rate of two jobs a day a profitable business is easily built up. The idea is just spreading to various cities, and there it little competition except the old fashioned strong arm method.

Other uses that have been found for Ford motors and old chassis have been discovered in profusion on the farm. As shown in the illustrations creditable drilling rigs have been made up from old parts, while the wheels, axles and entire frames have been converted into rubber-tired trailers in which the stock is hauled to market.

Even airplanes have been flown with this motor! When geared by chain to a propeller of the required efficiency, generally $51 / 2$ foot pitch and six foot diameter, a static thrust of 275 lbs can be developed which will fly several planes now being built and for which blueprints are available.

Thus, though new model Fords are appearing in increasing numbers on the highways of the country, new uses for the old reliable Model T Ford engine will continue to be found.

Adrien Remy, French engineer, has The tank-like cabin carries fusl completed his double-pontoon boat and a crew of six men. A 650

North Atlantic

Crossing the Atlantic in 60 hours is the feat claimed possible by Remy, inventor of an ocean hydroglider! Contrast this with methods of travel as developed in the last two hundred years.

CPEED! Speed!! Speed!!
Ever since the Pilgrims set foot on Plymouth Rock-ever since the days when Virginia was first colonized, there has been the cry among shippers for greater speed in crossing the stormy North Atlantic!

Ships have grown in size and have varied greatly in type since Colonial days. From the ships of the Mayflower era with their "record breaking" trips of 80 days, down to present day liners and speedy aircraft, the one thought uppermost in the minds of men has been the reduction of time con-
sumed in crossing the water barrier between the capitals of the old and New Worlds. At present shipping men are fired with the dreams of wealth which are sure to be showered upon the engineer who will furnish the best and most reliable way of crossing the Atlantic in what is termed "airplane time."

So it is that one of these days natives of New York may be surprised to see, racing up the harbor past Governor's Island, a queer looking hydro-gKider. Flashing to the Battery at 70 knots an hour, it is pos-

sible that this strange craft will dock in theNew World but 60 hours from Cherbourg. Behind the actual accomplishment of this feat will be the romantic stury of shipping develop-ment- the story of scudding sailing ships, hard driving masters, the story of colossal liners with hearts of steel, and of patient, obscure thinkers who make these advances possible.

It is a far cry from the crude machinery of James Watt, who built the first marine steam engine for crossing the Atlantic, to the modern flosting palaces which are shortly to be superseded in their four day schedule by faster means of carrying precious documents, gold, and letters of bate between the two world centers. It is a still further cry from ships of Columbus ${ }^{\text {B }}$ time, of Hendrik Hudson's time, to the new R.100, the British dirigible, and to the Remy surface hydro-glider.

Behind all the development which has taken place in cutting hours and minutes from inter-continental schedules there has ever been the urgent cry for speed, more speed!

Refore the days of the trans-Atlantic
cable, there was a great premium paid to owners of ships that could bring to the new world freights of a perishable nature in the lowest elapsed time. News, bank clearings, and the intricate documents of international banking were carried on specially constructed ships which earned fortunes for their owners. It was such competition which forced the development of the first steamers, and drove the less efficient sails from the seas. Speed, more speed!

Why Speed?

Why? Because "there is money in it," as the hard headed men of business say. They have learned that transAtlantic trade showers rich returns on the man who devises the quickest means for bringing the continents closer together.

It is true that the
cable eased the burden of the ships somewhat, but after the cable had been laid and news was being rushed undersea with the speed of light, gold still had to be carried, international banking clearances were being held up pending arrival of money shipments at their destinations, and the formal processes of government were rendered all the more sluggish for each extra hour consumed in bringing mail and express matter from one side to the other.

The building of such fast mail and passenger steamers as the Mauretania, the Olympic, Berengaria, and Leviathan seemed the ultimate in ocean Iransportation. When they were built, the airplane was a back lot toy. It was hardly worthy of even military recognition, and certainly not considered as a possible means for hopping the Atlantic with any degree of reliability.

Though airplanes have spanned the ocean, the fact remains that planes to-

The dirigible is conait ered by many as too fragila for 50 hour trame - ocean fichta.
day have not developed to such an extent that they are reliable transports. Business will not yet trust valuable express matter and shipments of gold to airplanes. Though planes will cross the sea in 35 hours, they are not capable of carrying payloads reliably. For the present they are out of the picture as far as an improvement in trans-oceanic express work is concerned.

But there is at present, actually huilt and ready for a trial trip, a queer design for a trans-oceanic speed boat which was constructed by Adrien Remy, a Krench engineer. Built on the banks of the Seine at the Saint-Ouens marine works, the odd craft was given her trials early this year at the little town of Javel. A proposed trip to prove her the ultimate type of trans-oceanic speed carrier is planned for the early winter.

CONQUEST of the MOON
 (PART I) Y NAME is Julian. I am called Julian

M5th. I come of an illustrious family -my great-great-grandfather, Julian lst, a major at twenty-two, was killed in France early in The Great War. My greatgrandfather, Julian 2nd, was killed in battle in Turkey in 1938. My grandfather, Julian 3rd, fought continuously from his sixteenth year until peace was declared in his thirtieth year.

At sixteen I graduated from the Air School and was detailed to the International Peace Fleet, being the fifth generation of my line to wear the uniform of my country. That was in 2016, and I recall that it was a matter of pride to me that it rounded out the full century since Julian lst graduated from West Point, and that during that one hundred years no adult male of my line had ever owned or worn civilian clothes.

Of courso there were no more wars, hut there still was fighting. We had the pirates of the air to contend with and occasionally

The crew of THH BARSOOM vatched helpleauly, unable to aid their comrades in their unequal etruggle.

by Edgar Rice Burroughs Author of "TAR Z A N"

I N THIS breathless serial of the adventures of five men marooned in the center of the moon, Edgar Rice Burroughs outdoes even his previous deservedly famous tales. Beset by strange, half-human animals, the earth men struggle for their lives in a queer world of red grass and perpetual day, where the Men in the Moon are not the least of the many dangers.
sorse of the uncivilized tribes of Russia, Africa and central Asia required the attention of a punitive expedition. There wasn't a firearm in the world other than those with which we were arred, and a few of ancient design that were kept as heirlooms, or in museums, or that were owned by savage tribes who could procure no ammunition for them, since we permitted none to be manufactured. There was not a gas shell nor a radio bomb, nor any engine to discharge or project one; and there wasn't a hig gun of any calibre in the world. I veritably believed that a thousand men equipped with the various engines of destruction that had reached their highest effieiency at the close of the war in 1967 could have conquered the world; but there were not a thousand men so armed-there never could bo a thousand men so equipped anywhere upon the face of the Earth.

But it seems that Providence never intend-

ed that the world should be without calamities. If man prevented those of possible internal origin there still remained undreamed of external sources over which he had no control. It was one of these which was to prove our undoing. Its seed was sown thirty-three years before I was born, upon that historic day, June 10th, 1967, that Earth received her first message from Mars, since which the two planets have remained in constant friendly communication, carrying on a commerce of reciprocal enlightenment.

In some branches of the arts and sciences the Martians, or Barsoomians, as they call themselves, were far in advance of us, while in others we had progressed more rapidly than they. Knowledge was thus freely exchanged to the advantage of both worlds.

Martian news held always a prominent place in our daily papers from the first.

The Earth Talks to Mars

THEY helped us most, perhaps, in the fields of medicine and aeronautics, giving us in one, the marvelous healing lotions of Barsoom and in the other, knowledge of the Eighth Ray, which is more genrrally known on Earth as the Barsoomian Ray, which is now stored in the bouyancy tanks of every air craft and has made obsolete those ancient types of plane that depended upon momentum to keep them afloat.

That we ever were able to communicate intelligibly with them is due to the presence upon Mars of that deathless Virginian, John Carter, whose miraculous transportation to Mars occurred March 4th, 1866, as every achool rhild of the twenty-first century knows. It was he who evolved the preacnt inter-planetary code.

Almost from the first the subject which engrossed us all the most was the possibility of an actual exchange of visits between Earth Men and Barsoomians. Each planet hoped to be the first to achieve this, yet neither withheld any information that would aid the other in the consummation of the great fact. We had the Eighth Ray, the motors, the oxygenating devices, the insulating processes-everything to insure the safe and certain transit of a specially designed air craft to Mars, were Mars the only other inhabitant of space. But it was not and it
was the other planets and the Sun that wo feared.

In 2015 Mars had dispatched a ship for Earth with a crew of five men provisioned for ten years. It was hoped that with good luck the trip might be made in something less than five years, as the craft had developed an actual trial speed of one thousand miles per hour. At the time of my graduation the ship was already off its course almost a million miles and generally conceded to be hopelessly lost.

We had had a ship about ready at the time of the sailing of the Martians, but tho government at Washington had forbidden the venture when it became apparent that the Barsoomian ship was doomed-a wise decision, since our vessel was no better equipped than theirs. Nearly ten years elapsed before anything further was accomplished in the direction of assuring any greater hope of success for another interplanetary venture into space, and this was directly due to the discovery made by a former classmate of mine, Lieutenant Commander Orthis, one of the most brilliant men I have ever known, and at the same time one of the most unscupulous, and, to me at least, the most obnoxious.

Orthis Isolates the Eighth Ray

W
E HAD entered the Air School together -he from New York and I from lllinois-and almost from the first day wo had seemed to discover a mutual antagonism that, upon his part at least, must have been considerably strengthened by numerous unfortunate occurrences during our four years beneath the same roof. In the first place he was not popular with either the cadets, the instructors, or the officers of the school, while I was most fortunate in this respect. In the class room be outshone us all-even the instructors were amazed at the brilliancy of his intellect-and yet as we passed from grade to grade I often topped him in the final examinations. I ranked him always as a cadet officer, and upon graduation I took a higher grade among the new ensigns than he.

From then on I saw little of him, his services confining him principally to land service, while mine kept me almost constantly on the air in all parts of the world. Occasionally I heard of him-usually some-
thing unsavory; he had married a nice girl and abandoned her-there had been talk of an investigation of his accounts-and the last that there was a rumor that he was affiliated with a secret order that sought to overthrow the government.

And during these nine years since graduation, as we had drifted apart in interests, so had the breach between us been widened by constantly increasing difference in rank. He was a Lieutenant Commander and I a Captain, when in 2024 he announced the discovery and isolation of the Eighth Solar Ray, and within two months those of the Moon, Mercury, Venus and Jupiter. The Eighth Barsoomian and the Eighth Earthly Rays had already been isolated, and upon Earth the latter erroneously called by the name of the former.
Orthis' discoveries were hailed upon two planets as the key to actual travel between the Earth and Barsoom, since by means of these several rays the attraction of the Sun and the planets could be definitely overcome and a ship steer a direct and unimped. ed course through space to Mars.
Orthis wanted to equip a ship and start at once, but again the government intervened and forbade what it considered an unnecessary risk. Instead Orthis was ordered to design a small radio operated fier, which would carry no one aloard. and which it was believed could be automatically operated for at least half the distance between the two planets. After his designs were completed, you may imagine his chagrin, and mine as well, when I was detailed to oupervise construction. yet I will say that Orthis hid his natural emotions well and gave me perfect cooperation in the work we were compelled to undertake together. On my part I made it as easy for him as I could, working with him rather than over him.

The Barsoom Takes Off for Mars

Tr WAS late in 2024 that the ship was launched upon its strange voyage, and almost immediately, upon my recommendation, work was started upon the perfection of the larger ship. Orthis was again my assistant, and with the means at our disposal it was a matter of less than eight months before The Barsoom, as she was christened.
was completely overhauled and thoroughly equipped for the interplanetary voyage.
The various eighth rays that would assist us in overcoming the pull of the Sul, Mercury, Venus, Earth, Mars and Jupiter were stored in carefully constructed and well protected tanks within the hull, and there was a smaller tank at the bow containing the Eighth Lunar May, which would permit us to pass safely within the zone of the moon's influence without danger of being attracted to her barren surface.

Our own experimental ship had been speeding upon its lonely way now for eight months, and so accurate had Orthis' scientific deductions proven that the most delicate instrument could detect no slightest deviation from its prescribed course. It was then that Orthis began to importune the government to permit him to set out with the new craft that was now completed. The authorities held out, however, until the latter part of 2025 when, the experimental ship having been out a year and still showing no deviation from its course, they felt reason. ably assured that the success of the venture was certain.

The Barsoom required five men properly to handle it, and as had been the custom through centuries when an undertaking of more than usual risk was to be attempted, volunters were called for, with the result that fully half the personnel of the International Peace Fleet begged to be permitted to form the crew of five.
The government finally selected their men from the great number of volunteers, with the result that once more was I the innocent cause of disappointment and chagrin to Orthis, as I was placed in command, with Orthis, two lieutenants and an ensign completing the roster.
The Barsoom was larger than the craft dispatched by the Martians, with the result that we were able to carry supplies for fifteen years. We were equipped with more powerful motors which would permit us to maintain an average speed of over twelve hundred miles an hour, carrying in addition an engine recently developed by Orthis which generated sufficient power from light to propel the craft at half-speed in the event that our other engine should break down.
Our farewells were made at an claborate ball at the White House on Deceniber 24,

2025, and on Christmas day we rose from the landing stage at which The Barsoom had been moored, and amid the blare of bands and the shouting of thousands of our fellow countrymen we arose majestically into the blue.

Equipment of The Barsoom

ISHALL not bore you with dry, technical descriptions of our motors and equipment. Suffice it to say that the former were of three types-those whirh propelled the ship through the air and those which propelled it through ether, the latter of course represented our most important equipment, and consisted of powerful mul-liple-exhaust separalors which isolated the true Barsoomian Eighth Ray in great quantities, and, by exhausting it rapidly earthward, propelled the vessel toward Mars. These separators were so designed that, with equal facility, they could isolate the Earthly Eighth Ray which would be necessary for our return voyage.
The auxiliary engine, which I mentioned previously and which was Orthis' latest invention, rould be easily adjusted to isolate the eighth ray of any planet or satellite or of the sun itself, thus insuring us motive power in any part of the unisurse by the simple expedient of generating and exhausting the eighth ray of the nearest hravenly body. A fourth type of generator drew oxygen from the ether, while another emanated insulating rays which insured us a uniform temperature and external pressure at all times, their action being analogous to that of the atmosphere surrounding the earth.
Had it not been for Orthis' presence I could have looked forward to a reasonably pleasurable voyage, for West and Jay were extremely likable fellows and sufficiently mature to be companionable, while young Norton, the ensign, though but seventeen vears of agge, endeared himself to all of us from the very start of the voyage by his pleasant manners, his consideration and his willingness in the performance of his duties. There were thref staterooms aboard The Barsoom, one of which I occupied alone. while West and Orthis had the second and Jay and Norton the third.

West and Jay were lieutenants and had been classmates at the air school. They
would of course have preferred to room together, but could not unless I commanded it or Orthis requested it. Not wishing to give Orthis any grounds for offense 1 hesitated to make the change, while Orthis, never having thought a considerate thought or done a considerate deed in his life, could not, of course, have been expected to suz. pest it. We all messed together, Wrst, Jay and Norton taking turns at preparing the meals. Only in the actual operation of the ship were the lines of rank drawn strictly. Otherwise we associated as equals.
We had books and writing materials and games, and we were, of course. in constant radio communication with both Earth and Mars, receiving continuously the latest news from both planets. There was always a certain constraint in Orthis' manner toward me, yet I must give him credit for bebaving outwardly admirably. Unlike the others we never exchanged pleasantries with one another, nor could I, knowing as I did that Orthis hated me, and feeling for him personally the contempt that I felt because of his character. Imellectually he commanded my highest admiration, and upon intellectual grounds we met without constraint or reserve.

Studying the Vegetation of the Moon

IT WAS about the second day that I noticed with some surprise that Orthis was exhibiting a friendly interest in Norton. Orthis was a good talker. He knew his profession thoroughly, and was an inventor and scientist of high distinction. Norton, though but a boy, was himself the possessor of a fine mind. He had been homor-man in his graduating class, heading the list of ensigns for that year, and I could not help but notice that he was drinking in every word along scientific lines that Orthis vouchsafed.
We had been out about six days when Orthis came to me and suggested, that inasmuch as West and Jay had been classmates and chums that they be permitted to room together and that he had spoken to Norton who had said that he would be agreeable to the change and would occupy West's bunk in Orthis' stateroom. I was very glad of this for it now meant that my subordinates would be paired of in the most agreeable manner, and as long as they were contented,

I knew that the voyage from that standpoint at least would be more successful.
We were beginning to feel the influence of the Moon rather strongly. At the rate we were traveling we would pass closest to it upon the twelfih day, or about the 6th of January, 2026.
Our course would bring us within about twenty thousand miles of the Moon, and as we neared it I believe that the sight of it was the most impressive thing that human eye had ever gazed upon before. To the naked eye it loomed large and magnificent in the heavens, appearing over ten times the size that it does to terrestrial observers, while our powerful glasses brought its weird surface to such startling proximity that one felt that he might reach out and touch the torn rocks of its tortured mountains.
Our eyes were first attracted by what appeared to be movement upon the surface of some of the valleys and in the deeper ravines of the mountains. Norton exclaimed that there were creatures there, moving about, but closer observation revealed the fact of tiee existence of a weird fungus.like vegetation which grew so rapidly that we rould clearly discern the phenomena. From the spore it developed in the short period of a trifle over twenty-seven days into a mighty plant that is sometimes hundreds of feet in height.
The branches are angular and grotesque, the leaves broad and thick, and in the plants which we discerned the seven primary colors were distinctly represented. As each portion of the Moon passed slowly into shadow the vegetation first drooped, then wilted, then crumbled to the ground, apparently disintregrating almost immediately into a fine, dust-like powder-at least in so far as our glasses revealed, it quite disappeared entirely. The movement which we discerned was purely that of rapid growth, as there is no wind upon the surface of the Moon. Both Jay and Orthis were positive that they discerned some form of animal life, either insect or reptilian. These I did not myself see, though I did perceive many of the broad, flat leaves which seemed to have been partially eaten.

The Other Side of the Moon

IPRESUME that one of the greatest thrills that we experienced in this adventure, that was to prove a vertiable Pan-
dora's box of thrills, was when we commenced to creep past the edge of the Moon and our eyes beheld for the first time that which no other human eyes had ever rested upon-portions of that two-fifths of the Moon's surface which is invisible from the Earth.

I cannot say that it differed materially from that portion of the Moon that is vis. ible to us-it was merely the glamour of mystery which had surrounded it since the beginning of time that lent to it its thrill for us. Here we observed other great mountain ranges and wide undulating plains, towering volcanoes and mighty craters and the same vegetation with which we were now become familiar.
We were two days past the Moon when our first trouble developed. Among our stores were one hundred and twenty quarts of spirits per man, enough to allow us each a liberal two ounces per day for a period of five years. Each night, before dinner we drank to the President in a cocktal which contained a single ounce of spirits, the idea being to conserve our supply in the event of our journey being unduly protracted as well as to have enough in the event that it became desirable fittingly to celebrate any particular occasion.
Toward the third meal hour of the thirteenth day of the voyage Orthis entered the messroom noticeably under the influence of liquor.
With the repeal of the Prohibition Act, nearly a hundred years ago, the habit of drinking to excess abated, so that it became a matter of disgrace for any man to show his liquor, and in the service it was considered as reprehensible as cowardice in action. There was therefore but one thing for me to do. I ordered Orthis to his quarters.
He was drunker than I had thought him, and be turned upon me like a tiger.

Mutiny!

6 $\mathbf{~ T r O U}$ damned cur," he cried. "All my life you have stolen everything from me; the fruits of all my efforts you have garnered by chicanery and trickery, and even now, were we to reach Mars, it is you who would be lauded as the hero-not I whose labor and intellest have made possible this achievement. But by God we will not reach Mars. You have gone too far this
time, and now you dare to order me about like a dog and in inferior-l. whose brains have made you what you are."

I held my temper, for I saw the man was unaccountable for his wirds. "Go to your quarters, Orthis," I repeated my command. "I will talk with you again in the morning.

West and Jay and Norton were present. They sermed momentarily paralverd by the man's condition and gross insulordination. Norton, howeter, was the first to recover. Jumping quiekly to Orthis" side he laid his hand upon his arm. "Come, sir," he said, and to my surprise Orltis accompanied him quietly to their stateroom.

Before breakfast on the following morning I sfit for Orthis to conte to my stateroom. He entured with a truculent swagger, and his first words indicated that if he had not continued drinking, he had at least heen moved to no reqrets for his unwarranted attack of the previous rvening.
"Well." he aaid. "what in hell are you poing to do alrout it?"
${ }^{*}$ I cannot understand your attitude, Orthis," I told him. "I have nower intertionally injured you. When orders from the government threw us together I was as mush chagrined as you. I merely did as you did —obeyed orders. I have no drsire to rob you of anything, but that is not the question now. You have been guilty of gross insubordination and of drunkenness. I can prevent a repetition of the latter ly confiscating your liquor and kreping it from you during the balance of the vogage, and an apology from yous will atone for the former. I shall give you twenty.four hours to reach a decision. If you do not see fit to avail yourself of my demency. Oribis. you will travel to Mars and back again in irons. And I tell you, Orthis, that if 1 possibly can do so I shall use the authority which is mine upon this expedition and expunge from the log the record of your transeressions last night and this morning. Now go to your quarters; your meals will be served there for twentyfour hours and at the end of that time I shall rereive your decision. Meanwhile your liquor will he taken from you."

He gave me at ugly look, turned upon his heel and left my stateroom.

Destruction!

NORTON was on watch that night. We were two days past the Moon, We:l, Jay and I were asleep in our staterooms. when suddenly No:ton entered mine and shook me *iolently by the shoulder.
"My Cod. Captain." he cried, "come quick. Commander Orthis is destroying the engines."

I leaped to my feet and followed Norton amidship to the engine-room, calling to West and Jay as I passed their stateroom. Through the bull's-eye in the engine-room door, which he had locked, we could sere Orthis working over the auxiliary generator which was to have proven our salvation in an emergency. I breathed a sigh of reliwf as my eyes moted that the main battery of engines was functioning properly, sinee. as a matter of fact. we had not expected to have to rely at all upon the auxiliary generator, having stored sufficient quantities of the Eiphth Ray of the various heavenly bodies by which we might he influenced, to carry us safely thronghout the entire extent of the long voyage. West and Jay had joined us by this time. and 1 now called to Orthis, commanding him to open the door. He did something more to the penerator and then arose. crossed the engineroom directly to the door, unbolted it and threw the door open. His hair nas dishevelled, his face drawn, his eyes shining with a peculiar light.
"What have you heen doing here, Orthis?" I demanded. "You are under arres. and supposed to be in your quarters."
"You'll see-what I've been doing," he replied truculently, "and it's done-it's done-it can't ever be undone. I've sern to that."

I grabbed him roughly by the shoulder. "What do you mean? Teli me what you have dont, or by God I will kill you with my own hands," for 1 knew, not only from his words but from his expression. ihat be had accomplished something which he considered very terrible.

The man was a coward and he quailed under my grasp. "You wouldn't dare to kill me," he cried, "and it don't make any difference, for we'll all be dead in a few hours. Go and look at your damned compass."

The invisible tentacles of Lunar gravity clutched the helpless BARSOOM.

In the Grasp of the Moon

NORTON, whose watch it was, had already hurried toward the pilot room where were located the controls and the various instruments. This room, which was just forward of the engine-room, was in effect a circular conning-tower which projected about twelve inches above the upper hull. The entire circumference of this twelve-inch superstructure was set with small ports of thick crystal glass.

As I turned to follow Norton I spoke to West. "Mr. West," I said, "you and Mr.

Jay will place Lieutenant Commander Orthis in irons immediately. If he resists, kill him."

When I reached the pilot house I found Norton working very quietly with the controls. There was nothing hysterical in his movements, but his face was absolutely ashen.
"What is wrong, Mr. Norton?" I asked. But as I looked at the compass simultaneously I read my answer there before he spoke. We were moving at right angles to our proper course.
"We are falling towerd the Moon, sir," he said. "and she does not respond to her control."
"Shut down the engines," I ordered, "they are only accelerating our fall,"
"Aye, aye, sir." he replied.
"The Lunar Eighth Ray tank is of suff. cient capacity to krep us off the Moon," I said. "If it has not been tampered with, ve should be in no danger of falling to the "loon's surface."
"If it has not been tampered with, sir; ypa, sir, that is what I have been thinking."
"But the fanme hipre shows it full to capacitv," I reminded him.
"I know sir." he replied, "but if it were fult to capacity, we should not be falling so rapidly."

Immediately I fell to examining the pange, almost at once discovering that it had been tampered with and the needle set permanently to indicate a maximuri supply. Iturned to my companion.
"Mr. Norton," I said, "please go forward and investigate the Lunar Eighh Ray tank, and report bark to me immediately."

The young man saluted and departed. As he approached the tank it was neesesary for him to rran! through a very restricted place heneath the drak.

In alonut five minutes Norton returned. He was not so pale as he had been, but he louked verv haggard.
"Well?" I inquired an he halted before me.
"The exterior intake value hisy been opened. sir." he said. "ther rave were escaping into space. I have closed it, sir."

We Lose the Earth Forever

THE valve to which he referred was used only when the ship was in dry dock. for the purpose of refilling the bouyancy tank. and, was placed in an inacressible part of the hull where there was aboolutely no likelihood of its being aeridentally opened.

Norton glanced at the instrument. "We s-e not falling quite so rapidly now," he said.
"Yes," I replied. "I had noted that, and I have also been able to adjust the Lunar Eighth Ray gauge-it shows that we have ahout half the original pressure."
"Not enough to keep us from going aground." he commented.
"No, not here, where there is no atmosphere. If the Moon had an atmosphere we could a: least keep off the surface if we wished to. As it is, however, I imagine that we will be able to make a safe landing, though, of course that will do us little gnod. You understand. I suppose, Mr. Norton, that this is practically the end."

He nodded. "It will be a sad blow to the inhabitants of two worlds," lee remarked, his entire forgetfulness of self indicating the true nobility of his character.
"It is a sad report to broadcast," I remarked, "but it must be done, and at once. You will, please, send the following message to the Secretary of Peace:
"U. S. S. The Barsoom. January 6, 2026, about twenty thousand miles off the Moon. Lieutenant Commander Orthis, while under the influence of liquor, has destroved aux. itiary engine and opened exterior intake valve Lunar Eighth Ray bouancy tank. Ship sinking rapidly. Will keep you-",

Norton who had scated himself at the radio desk leaped suddenly to his feet and turned toward me. "My God, sir," he cried, "he has destroyed the radio outfit also. We can neither send nor receive."

A careful examination revealed the fact that Orthis had so cleverly and completely destroyed the insiruments that there was no hope of repairing them. 1 turned to Norton.
"We are not only dead, Norton, but we are buried, as well."

I smiled as I spoke and he answered me with a smile that betokened his utter fear. lessness of death.
"I have but one regret, sin," he said, "and that is that the world will never know that our failure was not due to any weakness of our machinery, ship or equipment."
"That is, indeed, too bad," I replied, "for it will tetard transportation between the Iwo worlds possibly a hundred years-maybe forever.

We Drop to the Moon

ICALLED to West and Jay who by this time had placed Orthis in irons and con. fined him to his stateroom. When they came I told them what had happened, and they took it as coolly as did Norton.

Together we immediately made a careful inspection of the ship, which revealed no further damage than that which we had al-
ready discovered, but which was sufficient as we well knew, to preclude any possibility of our escaping from the pull of the Moon.
"You gentlemen realize our position as well as I," I told them. "Could we repair the auxiliary generator we might isolate the Lunar Eighth Ray, refill our tank, and resume our voyage. But the diabolical cleverness with which Lieutenant Commander Orthis has wrecked the machine renders this impossible. It is my plan, therefore, to make a landing. In so far as the actual lunar conditions are concerned, we are confronted only by a mass of theories. It will, therefore, be at least a matter of consuming interest to us to make a landing upon this dead world where we may observe it closely. At least we can be no worse off.
"To live for fifteen years cooped in the hull of this dead ship is unthinkable. Had Orthis not destroyed the radio outfit we could have communicated with Earth and another ship been outfitted and sent to our rescue inside a year. But now we cannot tell them, and they will never know our fate. The emergency that has arisen has, however, so altered conditions that I do not feel warranted in taking this step without consulting you gentlemen. I wish, therefore, that you would express yourselves freely concerning the plan which I have outlined."

West, who was the senior among them, was naturally the one to reply first. He told me that he wia content to go wherever I led, and Jay and Norton in turn signified a similar willingness to abide by whatever decision I might reach. They also assured me that they were as kren to explore the surface of the Moon at close range as I, and that they could think of no better way of spending the remainder of their lives than in the acquisition of new experiences and the observation of new scenes.
"Very well, Mr. Norton," I said, "you will set your course directly toward the Moon."

Drifting

A
IDED by lunar gravity our descent was rapid.
As we plunged through space at a terrific speed, the satellite seemed to be leaping madly toward us, and at the end of fifteen hours I gave orders to slack off and brought
the ship almost to a stop about nine thousand feet above the summit of the higher lunar peaks. Never before had I gazed upon a more awe-inspiring scene than that presented by those terrific peaks towering five miles above the broad valleys at their feet. Sheer cliffs of three and four thousand feat were nothing uncommon, and all was rendered weirdly beautiful by the variegated colors of the rocks and the strange prismatic hues of the rapidly-growing veg. etation upon the valley floors.

From our lofty clevation above the peaks we coul 1 se many craters of various dimensions, some of which were huge chasms. three and four miles in diameter. As we descended slowly we drifted directly over one of these abysses, into the impenetrable depths of which we sought to strain our eyesight. Some of us believed that we detected a faint luminosity far below, but of that we could not be certain. Jay thought it might be the reflected light from thr molten interior.

At this altitude we made an interesting: discovery. There is an atmosphere surrounding the Moon. It is extremely tent. ous, but yet it was recorded hy our barometer at an altitude of about fifteen hundred feet above the highest peak we crowsed. As the ship drifted we presontly noted that it was taking a circular course paralleling the rim of the huge voleanic crater abowe whirh we were descending. I immediately gave orders to alter our course since, as we were descenting constantly, we should prewenth be below the rim of the crater and, locing unable to ris', be hopelessly lost in its huge maw.

It was my plan to drift slowly over one of the larger valleys as we descended, and make a landing amidst the vegetation which we perceived growing in riotous profusion and movement beneath us. But when West. whose watch it now was, attempted to alter the course of the ship, he found that it did not respond. Instead it continued to move slowly in a great circle around the inside rim of the crater. West looked up at us, smiled, and shook his head.

Caught in a Lunar Whirlpool

66 T IS no use, sir," he said, addressing me. "It is ahout all over, sir, and there won't be any shouting. We seem to
be caught in what one might call a lunar whirlpool, for you will have noticed, sir, that our circles are constantly growing smaller."
"Our speed does not seem to be increasing," 1 remarked, "as would follow were we approaching the vortex of a true whirlpool."
"I think I can explain it, sir," said Norton. "It is merely due to the action of the Lunar Eighth Ray which still remaing in the forward buoyancy tank. Its natural tendency is to push inself away from the Moon, which, as far as we are concerned, is represented by the rim of this enormous crater. As each portion of the surface repels us in its turn we are pushed gently along in a lessening circle, because, as we drop nearer the summit of the peak the greater the reaction of the Eighth Lunar Ray."
"I guess you are right, Norton," I said. "At least it is a far more tenable theory than that we are being sucked into the vortex of an enormous whirlpool. There is scarcely enough atmosphere for that, it seems to me."

As we dropped slowly helow the rim of the crater the tenability of Norton's theory became more and more apparent, fir preaently, though our speed increased slight. ly, the diameter of onr circular course remained constant, and, at a little greater
depth, our speed as well. We were descending now at the rate of a litele over ten miles an hour, the barometer recording a constantly increasing atmospheric pressure. The temperature rose slightly, but not alarmingly.

During the next ten miles our speed diminished rapidly, until we suddenly realized that we were no longer falling, but that our motion had been reversed and we were rising. Up we went for approximately eight miles, when suddenly we began to fall again. Again we fell, but this time for only six miles, when our motion was reversed and we rose again a distance of about four miles. This see-sawing was continued until we finally came to rest at about what we estimated was a distance of some one hundred and thirty miles below the summit of the crater. It was quite dark, and we had only our instruments to tell us what was happening to the ship, the inte-

With food and supplies for fifteen years, THE BARSOOM hurtled out into the unexplored regions of interstellar space. carrying within it five intrepid adventurers risking their lives in an effort to reach the planet Mars.

Edgar Rice Burroughs has written his greatest story in this thrilling tale of breathless adventure in the heart of the Moon. Don't fail to

Luna-weird inner world of prismatic vegetation, red grass, purple Moon Men-and the Moon Maid!
rior of which was, of course, brilliantly illuminated and comfortably warm.

The Hollow Moon

NOW below us, and now above us, for the ship had rolled completely over rach time we had passed the point at which we came finally to rest, we had noted the luminosity that Norton had first observed from above the mouth of the crater. Each of us had been doing considerable thinking, and at last young Norton could contain himself no longer.
"I beg your pardon, sir," he said deferentially, "but won't you tell us what you think of it; what your theory is as $t 0$ where we are and why we hang here in mid-air, and why the ship rolled over every time we passed this point?"
"I can only account for it," I replied, "upon a single and rather preposterous hypothesis, which is that the Moon is a hollow sphere, with a solid crust some two hundred and fifty miles in thickness. Grav-
ity is preventing us from rising above the point where we now are, while centrifugal force keeps us from falling."

The others nodded. They too had been forced to accept the same apparently ridiculous theory, since there was none other that could explain our predicament. Norton had walked across the room to read the barometer and I saw him studying it carefully, as though to assure himself that he had made no mistake in the reading. Then he turned toward us.
"There must be something wrong with this instrument, sir," he said. "It is registering pressure equivalent to that at the Earth's surface."

I walked over and looked at the instrument. It certainly was registering the pressure that Norton had read, nor did there seem to be anything wrong with the instrument.
"There is a way to find out," I said. "We can shut down the insulating generator and open an air-cock momentarily." It was, of course, in some respects a risky pro-
ceeding, but with West at the generator, Jay at the air-cock and Norton at the pump I knew that we would be reasonably safe, rven if there proved to be no atmosphere without. The only danger lay in the chance that we were hanging in a poisonous gas of the same density as the earthly atmosphere.

I tell wou that it was a very tenge moment as the thrie men took their posts to await my word of command. If it were atmosphere, we could propel the ship in it. and we could, if nothing more, go out on deck to lopathe fruali air. It was arranged that at my word of command West was to shut off the generator, Jay to open the aircock, and Vorton to start the pump. If fresh air failed to enter through the tube Jay was to give the signal, whereupon Norton would reversp the pump. West start the generator, and immediately Jay would close the air-cock again.

Breathing the Lunar Air

A5 JAl' was the only man who was to take a greater chance than the others, 1 walked over and stood beside him, plac. ing my nostrils as close to the air-cock as his. Then I gave the word of command. Everything worked perfectly and an instant later a ru*h of fresh, cold air way pouring into the hull of The Barsoom. West and vorton had lieen watching the efferte upon our fare rlosely, so that they knew almost as soon an we did that the result of our test had bren satisfactory.

I had them start the motors again then. and presently we were moving in a great spital upward toward the interior of the Moon. Our progress was very slow, but as we rose the temperature rose slowly, too, while the barometer showed a very slightly decreasing atmospheric pressurp. The luminosity, now above us, increased as we ascended, until finally the sides of the great well through which we were passing became slightly illuminated.

All this time Orthis had remained in irons in his stateroom. I had given instructions that he was to be furnished food and water, but no one was to spenk to him, and I had taken Norton into my stateroom with me. Knowing Orthis to be a drunkard, a traitor and a potential murderer I had no sympathy whatsoever for him. I had deter.
mined to court-martial him and I knew that the verdict of any court, whether composed of the remaining crew of The Barsoom or appointed by the Judge Advocate General of the Navy, could result in but one thing, and that was death for Orthis.

About twenty-six hours after we entered the mouth of the crater at the surface of the Moon we suddenly emerged from its opposite end to look upon a scene that was marvelous and weird. A soft, diffused light revealed to us in turn mountains, valleys and sea, the details of which were more slouly encompassed by our minds. The mountains were as rugged as those upon the surface of the satellite, and appeared equally as lofiy. They were, however, clothed with verdure almost to their summits, at least a few that were within our range of vision. And there were forests, toostrange forests, of strange trees, so unearthly in appearance as to suggest the weird phantasmagoria of a dream.

We did not rise much above five hundred feet from the pening of the well through which we had come from outer space when I described an excellent landing place and determined to descend. This was readily accomplished, and we made a safe landing close to a large forest and near the bank of a small stream. Then we opened the forward hatch and stepped out upon the deck of The Barsoom. the first Earth men to breathe the air of Luna. It was, according to Farth time, eleven a. m., January 8, 2026.

In the Heart of the Moon

ITHINK that the first thing which engaged our interest and attention was the strange, and then, to us, unaccountable luminosity which pervaded the interior of the Moon. Above us were banks of fleecy clouds, the undersurfaces of which appeared to be lighted from beneath, while through breaks in the cloud banks we could discern a luminous firmament beyond, though nowhere was there any suggestion of a central incandescent orb radiating light and heat as does our sun. The clouds themselves cast no shadows upon the ground, nor, in fact, were there any well-defined shadows even directly beneath the hull of the ship or surrounding the forest trees which grew close at hand. The shadows
were vague and nebulous, blending off into nothingness at their edges. Yet the general illumination surrounding us approximated that of a very slightly hazy Earth day,

This peculiar lunar light interested us profoundly, but it was some time before we discovered the true explanation of its origin. It was of two kinds, emanating from widely different sources, the chiff of which was due to the considerable radium content of the internal lunar soil, and principally of the rock forming the loftier mountain ranges, the radium being so combined as to diffuse a gentle perpetual light which pervaded the entire interior of the Moon. The secondary source was sunlight, which penetrated to the interior of the Moon ibrough the hundreds of thousands of huge craters penetrating the lunar crust. It was this sunlight which caried heat to the inner world, maintaining a constant temperature of about eighty degress Fahrenheit.

Centrifugal force in combination with the gravity of the Moon's crust, confined the internal lunar atmosphere to a blanket which we estimated at about fifty miles in thirkness over the inner surfare of this buried world. This atmosphere rarefies rapidly as one ascends the higher peaks. with the result that these are constantly - overed with perpetual snow and ice, send. ing great glaciers down mighty gorges toward the central seas. The Earth seasons are reflected but slightly in the Moon, there heing but a fow degrees difference between -ummer and winter.

The natural circulation of the lunar atmosphere, affected as it is by the constantlyrhanging volume and direction of the sun's raya, as well as the great range of temperature between the valleys and the ice-clad mountain peaks, produces frequent storms of greater or less violence. High winds are arcompanied by violent rains upon the lower levels and hlinding snowstorms among the barren heights above the vegetalion line. Rains which frll from low-hanging clouds are warm and pleasant: these which come from high clouds are cold and disagreeable, yet however violent or protracted the storm, the illumination remains practically constant-there are never any dark, lowering days within the Moon, nor is there any night.

Prismatic Vegetation

0F COLRSE we did not reach all these conclusions in a few moments, but I have given them here merely as the outcomof our deductions following a considerablc. experience within the Moon. Several miles: from the ship rose foothills which climbed picturesquely toward the cloudy heights of the loftier mountains behind them. There was no horizon. the distance that one could see being dependent solely upon one power of vision.

The ground about us was covered with rank vegetation of pale hues-lavenders, violets, pinks and yellows predontinating. Pink grasses which became distinctly flesh. color at maturity grew in abundance, and the stalks of most of the flowering plants were of this same peculiar hue. The flowers themselves were often of highly complex form, of pale and delicate shades, of great size and rare beauty. There were low shruls that bore a beery-like fruit, and many of the trees of the forest carried Iruit of considerable size and of a variety of forms and colors. Norton and Jay were debating the possible edibility of some of these, but I gave orders that no one was to taste them until we had had an opportunity to learn by analysis or otherwise those varieties that were non-poisonous.

There was aboard The Barsoom a small lahoratory equipped especially for the purpose of analyzing the vegetathe and minerat products of Mars according to earthly standards, as well as other means of conducting research work upon our sister planet. I was anxious to ascertain the chemical properties of the water since the manufacture of this necessity was slow, laborious and expensive. I therefore instructod West to take a sample from the stream and subject it to laboratory lests, and the others I ordered below for sleep.

They were rather more keen to set out upon a tour of exploration, nor could I hiane them, lut as none of us had slept for rather better than forty-eight hours I considered it of importance that we recuperate our vital forces. Here were air, water and vegetation-the three prime requisites for the support of animal life-and so I judged it only reasonable to assume that animal life existed within the Moon. If it did exist, it might be in some highly pred-
atory form, against which it would tax our resources to the utmost to defend ourselved. I insisted, therefore, upon each of us obtaining his full quota of slerp brfore venturing from the safety of The Barsoom.

Flying Toads and Four-Legged Snakes

WE: ALREADY had seen evidences of life of a low order, both reptile and insect, or perhaps it would be better to deseribe the latter as Aying reptiles, as they later proved to br-toad-like creatures with the wings of bats, that llitted among the fleshy boughs of the forest, emitting plainlive cries. Upon the ground near the ship we had seen but a single creature, which had been plainly visible to us all and may be best described as a five-foot snake with four frog-like legs, and a flat head with a single eye in the center of the forehead. Its legs were very short, and as it moved along the ground it both wriggled like a true snake and scrambled with its four short legs. We watched it to the edge of the river and saw it dive in and disappear beneath the surface.
"Silly looking beggar." remarked Jay, "and devilish unearthly."
"I don't know about that." I returned. He porsersed nohing visible to us that we are ont familiar wibl on Earth. "ossibly he was assemblied after a slightly different plan from any Farth crralure: but aside from that he is familiar to us, even to his amphihions habils. And theser flying toads. too; what of them? Wie have just as strange forms on Earth, though nothing precisely like these. Mars, too, has forms of animal and vegetable life peculiar to herself, yet nothing the existence of which would be impossible upon Earth, and she has, as well. human forms almost identical with our own. You see what I am trying to suggest?"
"Yes, sir," replied Jay: "that there may be human life similar to our own within the Moon."
"I see no reason to be surprised should we discover human beings here," I said; "nor would I be surprised to find a reasoning creature of some widely divergent form. I would be surprised, however, were we to find no form analogous to the human race of Farth."
"That is, a dominant race with well developed reasoning faculties?" asked Norton.
"Yes, and it is because of this possibility that we must have sleep and keep ourselves fit, since we may not know the disposition of these creatures, provided they exist, nor the reception that they will accord us. And so, Mr. Norton, if you will get a receptarle and fetch some water from the stream we will leave Mr. West on watch to make his analysis and the rest of us will turn in."

Norton went helow and returned with a glase jar in which to carry the water and the balance of us lined the rail with our service revolvers ready in the event of an emergency as he went over the side. As Norton reached the bottom of the ladder and set foot on Junar soil I called to him to make haste. Just in front of him was a low bush and beyond it lay the river, about thirty feet distant. In response to my command he gave a slight leap to clear the bush and, to our amazement as well as his own consternation, rose fully eighteen feet into the air, cleared a space of fully thirtyfive feet and lit in the river.

We Are Treated to a Ducking

soCOME!" I said to the others, wishing
L them to follow me to Norton's aid, and sprang for the rail; but I was too impetuous. I never touchrd the rail, but rleared it $\mathrm{l}_{\mathrm{y}} \mathrm{y}$ many feet, sailed over the intervening strip of land, and disappeared beneath the icy waters of the lunar river. I found myself in a sluggish, yet powerful current, the water seeming to move much as a lieavy oil moves to the gravity of Earth. As I came to the surface I saw Norton swimming strongly for the bank and a second later Jay emerged not far from me. I glanced quickly around for West, whom I immediately perceived was still on the deck of The Barsoom, where, of course, it was his duty to remain, since it was his watch.
The moment that I realized that my companions were all safe 1 could not repress a smile, and then Norton and Jay commenced to laugh, and we were still laughing when we pulled ourselves from the stream a short distance below the ship.
"Get your sample, Norton?" I asked.
"I still have the container, sir," he replied. and indeed he had clung to it through-
out his surprising adventure, as Jay and I, fortunately, had clung to our revolvers. Norton removed the cap from the botle and dipped the latter into the stream. Then he looked up at me and smiled.
"I think we have beaten Mr. West to it, sir," he said. "It seems like very good water, sir, and when I struck it I was surprised that I must have swallowed at least a quart."
"I tested a bit of it myself," I replied. "As far as we three are concerned, Mr. West's analesis will not interest us if be discovers that lunar water contains poisonous matter, but for his own protection we will let him proceed with his investigation."
"It is strange, sir," remarked Jay, "that none of us thought of the natural effects of the lesser gravity of the Moon. We have discussed the matter upon many occasions, as you will recall, yet when we faced the actual rondition we gave it no consideration whatsoever."
"I am glad," remarked Norton, "ihat I did not attempt to jump the river-I should have heen going yet. Probably landed on the top of some mountain."

As we approached the ship I saw W'st awaiting us with a most serious and dignified mien: but when he saw that we were all laughing he joined us, telling us after we reached the deck, that he had never witnessed a more surprising or ludicrous sight in his life.

Orthis Begs for Mercy

WE WENT below then and after closing and securing the hatch, three of us repaired to our bunks, white West with the sample of lunar water went to the laboratory. I was very tired and slept soundly for some ten hours. for it was the middle of Norton's wath before I awoke.
The only important entry upon the log since I had turned in was West's report of the resulis of his analysis of the water, which showed it was not only perfectly safe for drinking purposes but unusually pure, with an extremely low saline content.
1 had been up about a half an hour when West came to me, saying that Orthis requested permission to speak to me. Twenty.four hours before, 1 had been fairly well determined to bring Orthis to trial and execute hirm immediately, but that had been
when I had felt that we were all hopelessly doomed to death on his account. That he deserved death there was no question, but when men have faced death so closely and escaped, temporarily at least, 1 believe that they must look upon life as a most sacred thing and be less inclined to deny life to others. Be that as it may, the fact remains that having sent for Orthis in compliance with his request I received him in a mood of less stern and uncompromising justice that would have been the case twentyfour hours previous. When he had been brought to my statcroom and stood before me, I asked him what he wished to say to me. He was entirely sober now and bore himself with a certain dignity that was not untinged with humulity.
"I do not know what has occurred since I was put in irons, as you bave instructed the others not to speak to me or answer my questions. I have had ample time to teflect upon my actions. That I was intoxicated is, of course, no valid excuse, and yet it is the only excuse that I have to offer. I lieg, sir, that you will aecept the assurance of my sincere repret of the unforgivalul things that I have done, and that you will permit me to live and atone for my wrong. doinge, for if we are indeed upon the surface of the Mown it may be that we call ill spare a single member of our small party. I throw myself, sir, entirely upon your merry, but beg that you will give me anothes rliance."

Clemency for Orthis

REALIZING my natural antipathy for the man and wishing most sincerely not to be influenced against him because of it, I let his plra influence me against my better judgment with the result that I promised him that I would give the matter eareful consideration, discuss it with the othere, and he influenced lareely by their decision. 1 had him returned to his stateroom then and sent for the other members of the party. With what fidelity my memory permitted I repeated to them in Orthis' own words his request for mercy.
"And now, gentlemen," I said, "I would like to have your opinions in the matter. I really wish to abide by your desires because. of the personal antagonism that has existed
between Lieutenant Commander Orthis and myself since boyhood."

I knew that none of these men liked Orthis, yet I knew, too, that they would ap. proach the matter in a spirit of justice tempered by merey, and so I was not at all surprised when one after annther assured me that they would be glid if I would give the man another opportunity.

Again 1 sent for Orhis, and after explaining to him that inasmuch as he had given his word to commit no disloyal act in the future, I should plare him on parole, his eventual fate depending entirely upon his own cenduct: then had his irons removed and told him that he was to return to duty. Would to God that instead of free. ing him I had drawn my revolver and shot him through the heart!

We were all pretty well rested up by this :ime, and I undertook to do a little exploring in the vicinity of the ship, going out for a few hours each day with a single companion, leaving the other three upon the ship. I never went far afield at first, confining myself to an area some five miles in diameter between the crater and the river. Upon both sides of the latter, below where the ship had landed, was a considerable extent of forest. I ventured into this upon several occasions and once. just about time for us to return to the ship, I came upon a well marked trail in the dust of which were the imprints of three-loed fect. Fach day I set the eitreme limit of time that I would absent myself from the ship with instructions that two of those remaining aboard should set out in search of me and my companion, should we be absent over the specified number of hours. Therefore, I was unable to follow the trail the day upon which I discovered it, since we had scarcely more than enough time to make a brief examination of the tracks if we were to reach the ship within the limit I had al. lowed.

We Follow a Mysterious Spoor

IT CHANCED that Norton was with me that day and in his quiet way was much excited by our discovery. We were both positive that the tracks had been made by a four-footed animal, something that weighed between two hundred fifty and three hundred pounds. How recently it had been
used we could scarcely estimate, jut the trail itself gave every indication of being a very old one. I was sorry that we had no time to pursue the animal which had made the tracks but determined that upon the following day I should do so. We reached the ship and told the others what we had discovered.

After Orthis had been released from arrest Norton had asked permission to return to the former's stateroom. I had granted his request and the two had been very much together ever since. I could not understand Vorton's apparent friendship for this man, and it almost made me doubt the young ensign. One day I was to learn the secret of this intimacy, but at the time I must confess that it puzzled me considerably and bothered me not a little.

Each of the men had now accompanied me on my short excursions of exploration with the exception of Orthis. Inasmuch as his parole had fully reinstated him among us, in theory at least, I could not very well discriminate against him.

The day following our discovery of the trail, I accordingly invited him to accompany me, and we set out early, each armed with a revolver and a rifle. I advised West, who automatically took command of the ship during my absence, that we might be gone considerably longer than usual and that he was to feel no apprehension and send out no relief party unless we should be gone a full twenty-four hours, as I wished to follow up the spoor we had discovered.

I led the way directly to the spot at which we had found the trail, about four miles down the river from the ship and apparently in the heart of dense forest.

The flying-toads darted from tree to tree about us, uttering their weird and plaintive cries, while upon several occasions, as in the past, we saw four-legged snakes such as we had seen upon the day of our landing. Neither the toads nor the snakes bothered us, seeming only to wish to avoid us.

Beasts or Hurran Beings?

TUST before we came upon the trail, both sound of footsteps ahead of we heard thing similar to that made by galloping ani-mal-and when we came upon the trail
moment later it was apparent to both of us that dust was hanging in the air and slowly settling on the vegetation nearby. Something, therefore, had passed over the trail but a minute or two before we arrived. A brief examination of the spoor revealed the fact that it had been made by a threetoed animal whose direction of travel was $t 0$ our right and toward the river, at this point some half mile from us.
I could not help but feel considerable inward excitement, and I was sorry that one of the others had not been with me, for 1 never felt perfectly at ease with Orthis. I had done considerable hunting in various parts of the world where wild game still exists but I had never experienced such a thrill as I did at the moment that I undertook to stalk this unknown heast upon an unknown trail in an unknown world.
The trail led to the adge of the river which at this point was very wide and shallow. Upon the opposite shore, 1 could see the trail again directly opposite and I knew therefore that this was a ford. Without hesitating, I stepped into the river, and as 1 did so I glanced to my left to spe stretching before me as far as my pye could rearh a vast expanse of water. Here then I had tumbled upon the mouth of the river and, heyond, a lunar sea.
The land upon the opposite side of the river was rolling and gratsococered, hat in so far as I could sire, almost treefess. As I turned my eyrs from the sea back toward the opposite shore. I sitw that which caused me to halt in my trarks, cock my rifle and issue a cautimus warning to Orthis for silence, for there hefore us upon a knoll stood a small herser-like animal.

It would have bern a long shot, possibly five hundred yards, and I should have preferred to have come closer but there was no chance to do that now, for we were in the middle of the river in plain vipw of the animal which stood there watching us intently. I had srazcely raised my rifle. however, ere it wheeled and disappeared over the edge of the knoll upon which it had heen standing.
"What did it look like to you, Orthis?" I asked my companion.
"It was a good ways off." he replied, "and I only just got my binoculars on it as it dis. appeared. It was about the size of a
small pony, I should say, hut it didn't have a pony's heited."
"It appeared tailless to me?" I remarked.
"I satw no tail." said Orthis. "nor any pars or horns. It was a devilish fumny looking thing. I don't understand it. There was something about it-" he paused. "My God, sir, there was something about it that looked human."
"It gave mu" that same impression, too, Orthis, and I doubt if I should have fired had I been able to cover it, for just at the instant that I threw my rifle to my shoulder I felt that same strange impression that you mention. There was something human ahout the thing."

Surprised by the Horse-Humans

AS WE, talked, we had bern moving on acress the ford. Finally, we stepped out on the opposite shore and a moment later, far to the left, we caught another glimpse of the creiture that we had previously seern. It stood upon a distant knoll, evidently watching us.

Orthis and I raised our binoculars to our eyes almost simultancously and for a foll minute we examined the thing as it stood there, neither of us speaking, and then we dropped our glasses and looked at earh other.
"What do you make of it, sir?" he asked.
I shork my bead. "I don't know what to make of it, Orhis," I replicd: "but I should swear that I was Inoking straight into a human face., and yet the thrily was that of a quadruped."
"There can be no doubt of it, sir," he replied. "and this time one could see the harness and the closhing quite plainly. It appears to have some sort of a weapon hanging at its left side. Did you notice it, sir?"
"Yes, I noticed it, but I don't understand it."
A moment longer we stood watching thr creature until it turned and galloped off, disappearing behind the knoll on which it had stood. We decided to follow the trail. We had gone but a short distance when the trail approached the river again. which puzzled me at the time somewhat, as we had gone apparently directly away from the river since we had left the ford, but after we had goase some mile and a half, we
found the explanation, since we came again to another ford while on leyond we saw the fiver emptying into the sra and realized that we had reossed an island lying in the mouth of the river.
I was hesitating as to whether to make the crossing and continue along the trail or to go back and searth the island for the strange "realure we had discosered. I rather hoped ti) rapture it. As I stond there, rather undecided. our altention was attracted back to the island by a slight moise. and as we looked in the direction of the disturbance, we saw five of the creatures ryeing us from high land a quarter of a mile away. When they saw that they were discovered they galloped boldly toward us. They had cume a short distane only, when they stopped again upon high knoll, and then one of them raised his face toward the sky and emitted a series of piercing howls. Then they came on again toward us nor did they pause until they were within fifty feet of us, when they came to a sudden halt.

The Men in the Moon

0LR first view of the creatures proved beyond a question of a doubt that they nere in effert human quadrupeds. The faces were very broad, much broader than any haman fares that I hase ever seen, but their profiles were singularly like those of the ancient North American Indians. Their hodirs were eovered with a garment with short lpes that ended above the knees. About the barrell of each was a surcingle and connected with it by a barkstrap was something analogous to a breeching in Eath hores harness.
Straps running on the left side supported a sheath in which was carried what appeared to be a knife of some description. And upon the right side a short spear was carried in a boot, similarly suspended from the two ornaments, much as the carbine of our ancient Earth cavalry was carried. The spear, which was about six feet long. was of peculisr design, having a slender, wellshaped head. from the base of which a crescent-shaped arm curved backward from one side, while upon the side opposite the crescent was a short, sharp point at right angles to the median line of the weapon.

For a moment we stood there eyeing each
other, and from their appearance I judged that they were as much interested in us as we were in them. I noticed that they kept looking beyond us, across the river toward the mainland. Presently, I turned for a glance in the same direction, and far away beyond a thin forest I saw a cloud of dust which seemed to be moving rapidly toward us. I called Orthis' attention to it.
"Reinforcements," I said. "That is what that fellow was calling for when he serramed. I think we had better try conrlusions with the five before any more arrive. We will try to make friends first, but if we are unsuccessful we must fight our way back toward the ship at once."

Accordingly, I stepped forward toward the five with a smile upon my lips and my hand outstretched. I knew of no other way in which to carry to them an assurance of our friendliness. At the same time, I spoke a few words in English in a pleasant and conciliatory tone. Although I knew that my words would be meaningless to them. I hoped that they would catch their intent from $m y$ inflection.

Attacked!

IMMEDIATELY upon my advance, one of the creatures turned and spoke to another, indicating to us for the first time that they possessed a spoken language. Then he turned and addressed me in a tongue that was, of course, utterly meaningless to me: but if he had misinterpreted my action, I could not misunderstand that which accompanied his words. for he reared up on his hind feet and simultaneously drew his spear and a wicked-looking, shortbladed sword or dagger, his companions at the game time following his example, until I found myself confronted by an array of weapons backed by scowling, malignant faces. Their leader uttered a single word which I interpreted as meaning halt, and so I halted.
I pointed to Orthis and to myself, and then to the trail along which we had come, and then back in the direction of the ship. I was attempting to tell them that we wished to go back whence we had come. Then I turned to Orthis.
"Draw your revolver," I said, "and follow me. If they interfere we shall have to

"Flesh, flesh! We are hungry! Give us flesh!"
shoot them. We must get out of this before others arrive."

As we turned to retrace our steps along the trail, the five dropped upon all fours, still holding their weapons in their forepaws, and galloped quickly to a position blocking our way.
"Stand aside," I yelled, and fired my pistol above their heads. From their actions, I judged that they had never before heard the report of a firearm, for they stood an instant in evident surprise, and then wheeled and galloped off for about a hundred yards, where they turned and
halted again, facing us. They were still directly across our trail, and Orthis and I moved forward determinedly toward them.

When we had arrived at a few yards from them, I again threatened them with my pistol, but they stood their ground, evidently reassured by the fact that the thing that I held in my hand, though it made a loud noise, inflicted no injury. I did not want to shoot one of them if I could possibly avoid it, so I kept on toward them,

I was within a few feet of them now, and their attitude was more war-like than ever,
convincing me that they had no intention of permitting us to pass peacefully.

Their features, which I could now see distinctly, were hard, fierce, and cruel in the extreme. Their leader seemed to be addressing me, but, of course. I could not understand him: hut when. at last, standing there upon his hind iert. with evidently as much ease as I stond upon my two legs, he earried his spear hack in a particularly menaring movement. I realized that I must act and act quickly.

We Destroy the Moon Creatures

ITHINK the fellow was just on the point of launching his spear at me, when I fired. The bullet struck him square between the eyes and he dropped like a log. without a sound. Instantly, the others wheeled again and galloped away, this time evincing speed that was almost appalling, clearing spares of a hundred feet in a single bound.

A glance behind me showed the dustcloud rapidly approaching thr river, upon the mainland, and calling to Orthis to follow me. I ran rapidly along the trail which led back in the direction of the ship.

The four Moon creatures retreated for about half a mile, and then halted and faced us. We were nearing them rapidly, for we had discovered that we, too, could show remarkable speed. when retarded by gravity only one-sixth of that of Earth. To clear forty fret at a jump was nothing. As we neared the four, who had taken their stand upon the summit of a knoll, I heard a great splashing in the river behind us, and turning, saw that their reinforcements were crossing the ford, and would soon be upon us. There appeared io be fully a hundred of them, and our case looked hope. leas indeed, unless we could manage to pass the four ahead of us, and rearh the comparative safety of the foreat beyond the first ford.
"Commence firing, Orthis," I said. "Shoot to kill. Take the two at the left as your targets, and I'll fire at the two at the right. We had better halt and take careful aim, as we cannot afford to waste ammunition."

We came to a stop about twenty-five yards from the foremost creature, which is a long pistol whot: but they were standing
still upon the crest of a knoll, distinctly outlined against the sky, and were such a size as to present a most excellent target. Our shots rang out simultaneously. The creature at the left, at which Orthis had aimed, leaped into the air, and fell to the ground, where it lay kicking convulsively. The one to the ripht uttered a piercing shriek, clutched at its breast, and dropped dead. Then Orthis and I charged the re. maining two, while behind us we heard loud weird cries and the pounding of gal. loping feet. The two before us did not retreat this time, but came to meet us, and again we halted and fired. This time they were so close that we could not miss them. and the last of our original lunar foemen lay dead before us.

Beset by Reinforcements

WF. RAN then, ran as neither of us had imagined human beings ever could run. I know that I covered over fifty feet in many a leap. but by comparison with the speed of the things behind us, we might have been standing still. They fairly flew over the lavender sward. I venture to say that some of them leaped fully three hundred feet at a time, and now, at every bound, they emitted fierce and terrible yells.
"It's no use, Orthis," I said to my companion. "We might as well make our stand here and fight it out. We cannot reach the ford. They are too fast for us."

We atopped then, and faced them, and when they saw we were poing to make a stand, they circled and halted ahout a hundred yards distant, entirely surrounding us. We had killed five of their fellows, and I knew we could hope for no quarter. I knew that if we ever escaped that fierce cordon, it would be by fighting our way through it.
"Come." I said to Orthis, "straight through for the ford," and turning again in that direction, I started blazing away with my pistol as I walked slowly along the trail. Orthis was at my side, and he, too, fired as rapidly as I. Each time our weapons spoke, a Moon Man fell. And now, they commenced to circle us at a run. They hurled spears at us, but I think the sound of our revolvers and the effect of the shots had to some measure unnerved them.
for their aim was poor and we were not, at any time, seriously menaced.

As we advanced slowly, firing, we made many hits, but I was horrified to see that every time one of the creatures fell, the nearest of his companions leaped upon him and cut his throat from ear to ear. One of them had only to fall to be dispatched by his fellows. A bullet from Orthis' weapon shattered the hind leg of one of them, bring. ing him to the ground. It was, of course, not a fatal wound, but the creature had scarcely gone down, when the nearest to him sprang forward, and finished him. And thus we walked slowly toward the ford, and I commenced to have hope that we might reach it and make our escape. If our antagonists had been less fearless, I should have been certain of it, but they seemed al. most indifferent to their danger, evidently counting upon their speed to give them immunity from our bullets.

Captured!

WE WERE almost at the ford when the circle suddenly broke, and then formed a straight line parallel to us, the leader swinging his spear about his head, grasping the handle at its extreme end. The wrapon moved at great speed, in an almost horizontal plane. I was wondering at the purpose of his action, when I saw that threr or four of those directly in the rear of him had commenced to swing their sprars in a similar manner. There was something strangely menacing about it that filled me wilh alarm. I fired at the lealer and missed, and at the report of my pistol, a half dozen of them let go of their swift whirling spears, and an instant later. 1 realized the purpose of their strange manmer. The lmayy weapons shot toward us. butts first. with the spred of lightining, the cressent-like hooks catching us around a leg, an arm and the nerk, hurling us lackward to the ground, and earh time we essayed to rise, we were struck again. until ne finally lay there, bruised and half stunned, and wholly at the mercy of our antagonists, who galloped forward quickly, stripping our weapons from us. Those who had hurled their spears at us recovered them, and then they all gathered about, examining us, and jabbering among themselves.

Presently, the leader spoke to me, prodding me with the sharp point of his spear. I took it that he wanted me to arise, and I tried to do so, but I was pretty much all in and fell back each time I essayed to obey. Then he spoke to two of his followers. who lifted me and laid me across the ba:k of a third. There I was fastened in a most uncomfortable position by means of leather straps which were taken from various parts of the harnesses of several of the creatures. Orthis was similarly lasted to anothrr of them, whereupon they moved slowly lark in the direction from which they had come, stopping. as they went, to collect the bodies of thrir dead, which were strapped to the backs of others of their companions.
As we crossed the ford toward the mainland, it was with difficulty that I kept from being drowned, since my head dragged in the water for a considerable distance and I was mighty glad when we came out again on shore. The thing that bore me was apparently quite tireless, as were the others, and we often moved for what seemed many miles at a fast run. Of course, my lunar weight was equivalent to only about thirty pounds on Earth while our captors seemed fully as well-muscled as a small carthly horse.

In the Camp of the Moon Men

HOW long we were on the march, I do not know, for where it is always daylight and there is no sun nor other means of measuring time, one may only guess at its duration, the result liring influenced considerably hy one's mental and phesical sensations during the period. Judped by these considerations, then. we might have bern on the trail for many hours. for 1 was not only most uncomfortalile in loods. hut in mind as well. Joueter that may loe, I know only that it was a terilhe journey: that we crossed rivers twice after reaching the mainland, and rame at last to our destination, amid low hills, where there was a level. parklike space, doted with weird tress. Here the straps were loosened, and we were dumped upon the ground, more dead than alive.

When I was finally able to sit up and look about. I saw that we were at the threshold of a camp or village. consisting of a
number of rectangular huts, with highpeaked roofs, thatehed or rather shingled, with the broad, round leaves of the trees that grew about.
W. saw now for the first time the females and the young. The former were similar to the moles, except that thry were of lighter build, wid they were far more numerous. They had udders, with from four to six trats, and many of them were followed by numerous progeny, seseral that I saw having as high as six young in a litter. From the way the women and children rushed upon us as we were unloaded in camp, I felt that they were going to trar us to pieces. and I really believe they would have had not our captors prevented.

Evidently the word was passed that we were not to be injured, for after the first rush they contented themselyes with examining us, and sometimes fecling of us or our clothing, the while they discussed us, but with the bodies of those who were slain, it was different, for when they discovered these had been unloaded upon the ground, they fell upon them and commenced to devour them, the warriors joining them in the gruesome and terrible frast. Orthis and I understood now that they had cut the throats of their fellows to let the blood, in anticipation of the repast to come.

Survival of the Fittest

A5 W'F. came to understand thim and the conditions under which they lived. many things concerning them were explained. They are naturally carnivorous, but with the exception of one other creature upon which they prey, there is no animal in that part of the interior lunar world with which 1 am familiar, that they may eat with safety. The flying-toad and the walking snake and the other reptilia are poisonous, and they dare not eat them.

The time had bren, I later learned, possilly, howner, ages before, when mary other animals roamed the surface of the inner Moon, but all had become extinct except our captors and another creature, of which we, at the time of our capture, knew nothing, and these two preved upon one another, while the species which was represented by those into whose hands we had fallen, raided the tribes and villages of their own kind for food, and ate their own
dead, as we had already seen. As it was the females to whom they must look for the production of animal food, they did not kill these of their own species and never ate the body of one. Enemy women of theis own kind, whom they captured, they brought to their villages, each warrior adding to his herd the individuals that he captured. As only the males are warriors, and as no one will eat the flesh of the female, the mortality among the males is, accordingly, extremely high, accounting for the vastly preater number of adult females. The latter are very well treated, as the position of a male in a community is dependent largely upan the size of his herd.

The principal mortality among the $f r$. males results from three causes-raids by the other flesh-eating species which inhabit the inner lunar world, quarrels arising from jeillousy among themselves, and death while bringing forth their young.

These creatures eat fruit and herbs and nuts as well as meat, but they do not thrive well upon these things exclusively. Their existence, therefore, is dependent upon the valor and ferocity of their males whose lives are spent in making raids and forays against neighboring tribes and in defending their own villages against invaders.

As Orthis and I sat watching the disgusting orgy of cannihalism about us, the leader of the party that had captured us came toward us from the center of the village, and speaking a single word, which I later learned meant come, he prodded us with his spear point until we staggered to our feet. Repeating the word, then, he started back into the village.
"I guess he wants us to follow him, Orthis," I said. And so we fell in behind the creature, and stepped on in the direction that he had taken, which led toward a very large hut-by far the largest in the village.

Examined by the Va-gas

IN THE side of the hut presented to us there seemed to be but a single opening, a large door covered by a heavy hanging, which our conductor thrust aside as we entered the interior with him. We found ourselves in a large room, without any other opening whatsoever, save the doorway through which we had entered, and over
which the langing had again been drawn, yet the interior was quite light, though not so much so as outside, but there were no means for artifieial lighting apparent. The walls were covered with weapons and with the skulls and other bones of creatures similar to our captors.

Lying upon a lofd of grasses at the opposite side of the room was a large male whose skin was so much, detper lavender hue than the others that we had seen. as to almost suggent a purple. The face, though badly disfirured hy scars, and grim and ferocions in the extreme, was an intelligent one. and the instant that J looked into those ryes. I knew that we were in the presence of a leader.

I few words passed between the two. and then the rbicf arose and came toward us. He examined us very critically, our cloth. ing seeming to interest him tremendously. He tried to talk with us, evidently asking us questions, and seemed very murh disgusted when it levame apparent to him that we could not understand him.

He gave some instructions to the fellow who !ad brought us, and we were taken out again, and to another hut, to which there "as prespnly brought a portion of the carrass of one of the erfatures we had killed before we were coptured. I could not eat any of it, howeser, and neither could Orthis: and after a while, by signs and gestures, we made them understand that we wished some other kind of food. with the result that a litile later. they brought us fruit and vegetalises, which were more pal. atalle and. as we were to discover later. sufficimoly mutritimus to carry us along and maintain our strength.

1 had hecome thiraty, and by simulating drinking. I fually sureerded in moking plain to them my droise in that direrlion. with the reoult that ihey led us out in a little stroam which ran hrough the village. and there we quarned our thirst.

We Learn the Lunar Language

SHORTLY after we arrived at the village, thry took away our wat hes, our porketknives. anci everithing that we possessed of a simila- nature, and which they consid. ered as curiosities. The chief wore Orthis' wristwatch above one fore-paw and mine
above the other, but as he did not know how to wind them, nor the purpose for which they were intended, they did him or us no good. The result was, however, that it was now entitely impossible for us to measure time in any way, and I do not know, aven to this day, how long we were in this strange sillige. Wir ate when we were hungry. and slept when we were tired.

It must hate bern immediately after wo arrised that they mater an attimpt to teach us their language. Two females were detailed for this duty. We werf given unlinnited fremdom within errtain bounds. which were well indicated by the several sentries which ronstanty watched from the summit of hills surrounding the village. Dast these we rould not go, nor do I know that we had any porticular desire to do so, since we realized only too well that there would be little chance of our regaining the ship should we escape the village, inasmuch as we had not the remotest idea in what direction it lay.

Our one hope Jay in learning their language. and then utilizing our knowledge in acquiring sorne definte information as to the surrounding country and the location of The Barsoom.

It did not seem to take us very long to learn their tonewe, though, of course, I realize that it may rally have theen months. Almost before we knw it. we were convers. ing freely with our captors.

It is a very differult language to speak, and as a written lauruage, would be practically impooille. For example. there is their word gu-r-ho. for whith Orthis and 1 disconerd tuthty werm separate: and dis. tinct meanings. and that there are others I have little or me doulst. The sperli is more aptly described as song, the 1 . aming of rath slable being gowrmed by the note in which it is sung.

Fortunately for us, there are no words of over three sillahles, and nowt of them consist of oill ow or two. or we should have been enlierly lost. The resulting speech, however, is rxtremely beautiful, and Orthis used to say that if he closed his eyes, he could imagine himself living constantly in grand opera.

I Talk With Ga-va-go

TfIE hief's namp, as we learned, was Ga-va-ro: the name of the tribe or village was Novans, while the race to which they helonged was known as Va-gas.

When I felt that I had mastered the language sufliciently wrill to make my self at least partially understood. 1 asked to sprak to Cia-va-ro. and shortly thereafier. I was taken to him.
"Yon have laurmed our sperili?" he asked.

I modded in the aflirmative. "I have." I said. "and I hate come to ask why we are beld captives. Wre winh only to be frimols, and to be allowed to go our way in prace."
"What manner of creature are you." he asked, "and where do youl come from?"

I asked him if he had poer heard of the Sun and the stars or any worlds outside his own, and he had replied that he had not, and that there were no surh things.
"But there are, Ca-va-po," I said, "and I and my companion are from another world. far, far outside your own. An accident brought us herc. Gise us loark our weapons, and litt us po."

He shook hia bead nergatively.
"Where yon rome from. do you eat one another 2" he asked.
"N N ." I replied, "we do not"
"Why?" he asked, and I saw his pyes narrow as he awaited my reply.

Was it mental telepathy or just luck that put the right answer in my mouth, for somehow, intuitively, I seemed to grasp what was in the creature's mind.
"Our flesh is poiann." I said. "thoqe who eat it dif."

He looked at me then for a long time. with an expression upon his face which I could not interpret. Presently he asked me another question.
"Are there many like you in the land where you live?"
"Millinns upon millions." I replied.
"And what do they pat?"
"They eat fruits and verctaliles and the flesh of animals." I answered.
"What animals?" he aaked.
"I have seen no animals here like them." I replipd, "hut there are many kinds unlike us, so that we do not have to eat flesh of our own race."
"Where is your country?" he demanded. "Take me to it."

I smiled. "I cannot take you to it," I said. "It is upon another world."

It was quite evident that he did not bee. lifve me, for he scouled at me ferociously.
"Do yon wish to die?" he demanded.
I told him that I had no such longing.
"Then ru will lead me to your counIry," he said. "where there is plenty of flowlt for everyone. Yout may think about it until I send for you agair. Go!" And thus hi" dismisspd me. Then he sent for Orthis, lut what Orthis told him. I never knew exactly. I had occasion to notice, however, that from that time Ca-va-qo indicated a marked preference for Orthis, and the latier was ofien called to his hut.

The Va-gas Break Camp

WAS momentarily expecting to be summoned in to Ga-va-go's presence, and Irarn my fate, when be discovered that I could not lead him to my country, where flesh was so plentiful. But at about this time we broke camp, and in the press of olher matters, he evidently neglected th take any further immediate action in my case, or at least, so I thought, until I later had reason to suspect that he felt that he need no longer depend upon me to lead him to this land of milk and honey.

The Va-gas are a nomadic race. The move that we made now was necessitated by the fact that all the other tribes nearby had fled before the ferocity of the No-vans, whose repeated and surcessful raids had depleted the villages of their neighbors and filled them with terror.

The breaking of camp was a wonderfully simple operation. All their fow belongings, consisting of extra clothing, trappinga, weapons, and their treasured skulls and bones of victims, were strapped to the backs of the women. Orthis and 1 earh bestrode a warrior detailed by Ga-vanoo for the purpose of transporting us, and we filed out of the village, leaving the huts behind.

Because of the women and the childrea, we moved more slowly than warriors do when on the march alone, when they seldom, if ever. :ravel slower than a trot, and more generally, at a fast gallop. We moved along a well-worn trail, passing several deserted villages, from which the prey of the

No-vans had fled. We crossed many rivers, for the lunar world is well watered. We skirted several lakes, and at one point of high ground, I saw, far at our left, the waters of what appeared to be a great ocean.

There was never a time when Orthis and I were not plentifully supplied with food, for there is an abundance of it growing throughout all the territory we crossed, but the No-vans had been without flesh for sevral days and were, in consequence, mad with hunger, as the fruits and vegetables which they ate seemed not to satisly them at all.

The Wrath of Zo-al

WE WERE moving along at a brisk trot when, without warning, we were struck by a sudden gust of wind that swept, cold and refreshing, down from some icy mountain fastmess. The effect upon the Novans was electrical. I would not have had to understand their language to realize that they were terrified.

A moment later a dash of rain struck us, and then it was every man for himself and the devil take the hindmost, as they broke into a wild stampede to place themselves close to their chief. Their hysterical flight was like the terrorized rush of wild cattle.

Old Ga-va-go, who was in the lead, had stopped and was waiting for us. Those who accompanied him seemed equally terrified with the rest, hat evidently they did not dare sun until Cavaceo gave the word. Cava-go waited until the last of the rearguard strageled in, and then be set off directly toward the mountains, the entire tribe moving in a rompart mass, though they might have fallen easy prey to an ambush or any sudden atlark. They knew, however, what I half gupssed. that knowing that their enemies were as terrified of the storms as they. there was little danger of their loting attacked.

We came at last to a hillside rovered with great trees which offyred some protection from both the wind and the rain. whirh had now arisen to the proportion of a hurricanc.

As we came to a halt, I slipped from the back of the warrior who had leen carrying me, and found myself beside one of the women who had taught Orthis and me the language of the Va .gas.
"Why is everyone so terrified?" I asked her.
"It is Zo-al," she whispered, fearfully. "He is angry."
"Who is Zo-al?" I asked.
She looked at me in wide-eyed astonishment. "Who is Zo-al!" she repeated. "They told me that you said that you came from another world, and I ran well helieve it. when you ask, who is Zo-al?"
"Wéll, who iz he?"' l insisted.
"He is a great heast." she whispered. "He is everywhere. He lives in all the great holes in the ground, and when he is angry. he comes foris and makes the water fitll and the air run away. We know that there is no water up there," and she pointed toward the sky. "But when Zoal is angry, be makes water fall from where there is no water, so mighty is Zo-al, and he makes the air to run away so that the trees fall before it as it rushes past, and huts are knocked flat or carried high above the ground. We have angered Zo-al, and he is punishing us."

The Light That Devours

I^{1}I WAS at that instant that there broke upon my ears the most terrific detonation that I have ever heard. So terrific was it that I thought my ear drums had burst, and simultaneously, a great hall of fire seemed to rome rolling down from the mountain heights above us.

The woman. covering her ears, shuddered, and when she saw the hall of fire, she voiced a piercing shriek.
"The light that devours!" she cried, "When that comes too. it is the end. for then is Zo-al mad with rage."

The ground shook to the terrifying noise, and though the ball of fire did not pasa rlose to us, still could I feel the heat of it even as it womt liy at a dislance, leaving a trail of blackened and smoking varetation in its rear. It must have traveled ahout ten milre, doun touard the sea, acrose rolling hills and lewel vallers, when suddenly it burst, the explosion bring followed by a report infinitely louder than that which I had first heard.

I had witnessed my first lunar electrical storm, and 1 did not wonder that the inlabitants of this strange world were terrified by it. As we cowered there among the
trees, I wondered if they were not afraid that the wind would blow the forest down and crush them, and 1 asked the woman who stood beside me.
"Yes," she said, "that often happens. but more often dors it happen that if one is caught in a clearing, the air that runs a.day picks him up and carries him along to drop him from a great height upon the hard ground. The trees bend before they break, and those who watch are warnel."
"It seems to me," I said, "that it would have been safer if Ga-va-go had led us into one of those sheltered ravines," and I indicated a gorge in the hillside at our right.
"No." she said, "Ca-va- ro is wise. He led us to the safest spot. We are sheltered from the air that runs away, and perhaps a little from the light that devours, nor can the waters that drown, reach us here, for presently they will fill that ravine full."

Nor was she wrong. Rushing down from the hillside, the water poured in torrents into the ravine, and presently, though it must have been twenty or thirty feet deep, it was filled almost to overflowing. Whoever had sought refuge there, would have been drowned and washed away to the big ocean far below.

The Storm Terror

THE storm must have lasted for a considerable time; how long, of course, I do not know. During the entire storm, the No-vans scarcely moved from their positions bentath the trees, with their barks toward the storm, where they stood with lowered heads like cattle. We experienced twelve detonations of the ground-shaking thunder, and witnessed six manifestations of the light that devours. Trees had fallen all about us, and as far as we rould see, the grasses lay flat and matted upon the ground.

Thry told me that storms of the severity of this wore infriquent, though rain and wind, accompanied by electrical manifestations, might be expected at any season of the year-I use that expression from habit, for one can scarcfly say that there are any well-marked spasonal changes within the Moon that could indicate corresponding divisions of lime as upon the Earth. A period of drought and cold rains retard growth and germination, while frequent water rains have an opposite effect,
the result being that you find vegetation of the same variety in all stages of development, growing side by side-blossoms upon one tree, fruit upon another, and the dry seed-pods upon a third. Not even, therefore, by the growth of plant life, might one measure time within the Moon, and the period of gestation among the Va-gas is similarly irregular, being affected by the physical condition of the female as well as by climatic conditions. I imagine. When the tribe is well-fed, and the weather warm, the warriors victorious, and the minds of the women at peace, they bring forth their young in an incredibly short period.

On the other hand, a period of cold, or of hunger, and of long marches, following defeat, induces an opposite result. The females nurse their young for a very short period of time, for they grow rapidly, and as soon as their molars are through, and they can commence eating meat, they are weaned. They are devilish little rascals, their youthful exuberance finding its outlet in acts of fiendish cruelty. As they are not strong enough to inflitt their tortures on adults they penetrate them upon one another, with the result that the weaker are often killed.

During the storm, they huddled, shivering and cold, against the adults. Possibly I should be ashamed to say it, but I felt no pity for them, and rather prayed that they would all be chilled to death, so hateful and wantonly cruel were they. As they become adults, they are less wanton in their atrocities, though no less cruel, their energies, however, being intelligently directed upon the two vital interests of their livesprocuring tlesh and women.

The Coming of the U-ga

SHORTLY after the rain ceased, the wind began to abate, and as I was cold, cramped and uncomfortable, I walked out into the open. As I walked briskly to and fro, looking here and there at the evidences of the recent storm, my glance chanced to rise toward the sky, and there I saw what appeared at first to be a huge bird, a few hundred feet above the forest in which we had sought shelter. It was flapping its great wings weakly and seemed to be almost upon the verge of exhaustion, and though I
could see that it was attempling to fly back in the direction of the mountains, the force of the wind was steadily carrying it in the direction of the lowlands and the sea. Presently it would be directly above me, and as it drew nearer, I knit my brows in puzzlement, for except for its wings, and what appeared to be a large hump upon its back, its form bore a striking resemblance of that of a human being.

Some of the No-vans evidently saw me looking upwards thus interestedly, and prompted by curiosity, joined me. When they saw the creature flying weakly overhead, they set up a great noise, until presently all the tribe had run into the open and were looking up at the thing ahove us.

The wind was lessening rapidly, but it still was strong enough to carry the creature gently toward us, and at the same time I perceived that whatever it was, it was falling slowly to the ground, or more correctly, sinking slowly.
"What is it?" I asked of the warrior standing beside me.
"It is a U-ga," he replied. "Now shall we eat."

I had seen no birds in the lunar world. and as I knew they would not eat the flying reptiles, I guessed that this must be some species of bird life, but as it dropped closer, I became more and more convinced that it was a winged human being, or at leant a winged creature with human form.

As it fluttered toward the pround. the No-vans run along to mett it, watinis for it to fall within reach. As lhey did so, Gava-go called to them to bring the creature to him alive and unharmed.

I was about a hunded yards from the spot, when the poor thing finally fell into their clutches. They dragerd it to the ground roughly, and a moment later I was horrified to see them tear its wings from it and the rump from its back. There was a great deal of grumbling at Ca-va-go ${ }^{\circ}$ order, as following the storm and their long fast, the tribe wa: ravenously hungry.
"Flesh, flesh." thry growled. "We are hungry. Give us Resh!" But Ga-va-no paid no attention to them, standing to one side beneath a tree, awaiting the prisoner that they were bringing toward him,

Into the Dreaded Moon Crater

THE strange wing-bearing creature who has fallen into the hands of the No-vans proves to le Nah-ee-lah the Moon Maid, most beautiful of all the women of Laythe. In the next installment of this gripping story Julian rescues the Moon Maid from the clutches of the treacherous Orthis and escrapes with her from the custody of the No-vans, only to confront danger in hideous form in the heart of the Moon Crater. Don't fail to continue this story in the

December Modern Mechanics Magazine

Science of Golf \sim

 What makes the championship golfer? The moviesshow you here every motion that goes into the perfect
mashie shot, as executed by the noted Tommy Armour.

HOW closely science assists in further. ing the delights of our national pastimes is well illustrated in the way motion pictures are teaching the fine points of golf shots.
The camera catches and holds each movement, thus allowing the beginner an opportunity to study the actual shot in full detail. Every motion of the finished golfer is lesson in itself, but it would be impossible to demonstrate these points in action without the movies.
On the opposite page appears a series of motion pictures showing the famous Tommy Armour, former American open champion, making a mashie shot. Follow the pictures from left to right, letting the eyes glide swiftly back and forth across the page. Then turn your altention to the story told by each picture.
Armour is particularly noted for lis deadly accuracy with the niblick and mashie clubs. These pictures show why. In each of the series the compact, closely controlled arm action is easily seen by the dominant factor in making the mashie sho.

In the first picture note the overlapping grip, which is notable for the fact that the hands are well on top of the shaft-with
is coming down for the stroke. This gives you the proper timing for the shot. Study the snapshots for ather pointers.

Made Easy by Movies

Coo-Coo CONTRAPTIONS CONTEST!
 Real Money
 for Nut Idcas

Abstract

HERE'S your chance to win real money for a nut idea! Sharpen your pencil and concoct a Coo-Coo Contraption like the one on the opposite page-the "coocooer." the better. Rules of the contest are given below. You don't have to be an artist - anyone can compete.

STLDS the Hand Cigaret lighter. the merhaniom of which in pirtured on the "pposite paze. W. think sou will aque with us that it is dilferem from the usual run of cigaret lighters it hurne no alcohol or other "xperisive furl. and in as dependable as the duily rising of the sum. The devion sutfers from the farl that it is net portable and rannot rasily be slipped into the vert powket. hut with ordinary attention and reqular inspections this ciparet lighter should last a lifetime. everpt for replacement of the rat and dog.

The Handy Ciparat liphler in a Coodion Comaption of the first water. The fordin, field has berin grosolv meralected by the wome inspontor. and Vadern Verhamios is puine tos offer mombly prize to aimalatr antivity in this lisamh of mordern widue. Shargun somer pencil and sume wise coneort a monerivance that will put the rizarel lishtor in the shade. and wnd rour cthot tu the Com-Cons Contraphion- Fditor. Eomber Bis. 1. Wordern Mer hanio Magazime, Robhinaliale. Minn.

Remember. sour contraplion should be as humornos as you rath make it. It need not esen arrer a uadul purpose. Ther funnier, the "coo-roner." the more far-fetched it is, the better is yoms chance of winning a prize. It is noi neressary to diagram pour device, although you may do so if you
wish. Just write cut a clear explanation of how your contraption works so that our artiat rall make a pirture of it.

Winners will be decided by the editorial staff of Modern Mechanics, and an expres: condition of eatry in the contest is that their decisions shall be final. Closing dates of the monthly contests will the the first of the month following the date on the cover. Thus Contest No. 1, beginning with this Novemher issue, will clom: December 1, 1928. If your contraption arrises after this date, it will automatically be entered in the second contest.

Prize-winners will b, ammounced and ti. winning contraptions pulblished in the earlisit posible issue after the close of the conIt: St. Vammeripts will not be returned: if you wish to preserve sour Coo-Coo Contraption. hee ware to kewp a copy of it. First prize will fur $\$ 25.50$: sccond prize \$10.00: and five thind prizes of \$3.0k "ach. In cike of a tir for ant of the prizes. the full amotent will be paid to each of the tying contestants.

Rememler, you donit have to draw the plan for vour "Coo.Coo Contraption" unless you want to. as the judges will decide the winners only on the idea submitted. But wake it funny!

Sharpen your pencil and get busy!

BRASS BRAIN Saves U.S. \$125,000 Yearly

Taking the place of a corps of trained mathematicians, this machine calculates the time of flood tides in all the ports of the world, enabling shipmasters to dock their liners safely.

IN THE rooms of the U. S. Coast and 1 Geodetic Survey in the Capitol at Wash. ington there stands a complicated mechanism of wheels and cogs known offi. cially as "Tide Predicting Machine No. 2."

But to the men who operate it, and who have a very human respect for its uncanny ability to do the work of 100 trained mathematicians, it is known as "The Brass Brain."

And so, in truth, it is. Would you like to know the exact minute of the flood tide in Hong Kong harbor in 1980? Very well; put the problem up to the Brass Brain.

To begin with, you must take into consideration the 37 "constants," or factors representing specific phases of sun and moon in a given locality at a certain time, and and adjust the Brass Brain to accommodate them. Then simply turn a crank of the machine and the mathematical interaction of these 37 "constants" is transmitted to a dial and read by the operator. That's all there is to it; the Brass Brain has given you the answer.

Few mathematical problems are more intricate than this one of predicting tides. The relative "pull" of the sum and the moon, their distance from the earth and from each other, and a number of other factors must be considered.

The machine weighs 2,500 pounds. It is 11 feet long, 2 feet wide, and 6 feet high. Its whirring cogs are enclosed in a housing of mahogany and glass.

Earthquakes, fresh-water floods, and strong winds that cannot be predicted affect the accuracy of the Brass Brain to a degree. Nevertheless 70% of the predicted tides agree within five minutes of the observed tide. The Coast and Geodetic Survey issues an annual bulletin in which it lists the forth. coming tides in 84 ports of the world. The report contains upwards of a million figures, all compiled by the Brass Brain. It has been estimated that the Brass Brain saves the government $\$ 125,000$ each year in sal. aries of mathematicians who would be required to take its place.

BLASTING ICEBERGS with LIQUID STEEL

Above is shown an iceberg drifting down from Greenland, heading to menace the North Atlantic shipping lanes. The size of these icy giants is graphically shown by comparison with the ship at the right. In the corner picture is shown the exposion resulting from detonation of a charge of thermite used to break up the bergs.

EVER since the steamship Titanic went down in the North Allantic after striking an iceberg, mariners have realized that these tremendous mountains of floating ice present a serious menace to navigation. Various methods of removing these icy invaders from the steamship lanes have been suggested, but not until recently has science developed an effective weapon.

Thermite, a mixture of finely powdered aluminum metal and oxide of iron, is the destructive agent employed in blasting icehergs apart. Its use is recommended by Prof. Howard T. Barnes, of the department of physics at McGill University, Montreal. For 35 years Prof. Barnes has been investigating the physical properties of ice and practical methods of controlling it.

When properly ignited, thermite generates high temperatures and produces extremely hot liquid steel. Strictly speaking, thermite is not an explosive compound. The whitehot steel converts the ice into hydrogen and oxygen gases so rapidly that a powerful explosion results. Using this method, a huge iceberg can be split into fragments as small
as to constitute no menace to commerce.
The energy from the molten steel supplies rays surpassing sunlight in their power to penelrate ice for many feet. Thermite is much used for welding trolley rail joints and for similar purposes.

Prof. Barnes believes that for a reasonable expenditure the menace of icebergs can be entirely removed from the steamer routes. Ice jams at power dams and bridges, which annually cause much destruction, can also be controlled by this simple method.

GOLF NOW PLAYED BY MACHINE

Several large hotels are now installing mechanical golf machines in their lobbies for the entertainment of their guests. The machines are inclosed with glass and the ball is set in motion and directed by means of a lever. Most of the machines provide a course of three holes, with traps and all the various hazards of the golfer incorporated. Score is leept by means of a dial attached to the front of the machine.

IT'S A LONG

-International Newsreel Photos.

Showing how parachute was atowed in airplane fuselage,

Here the airplane is shown immediately after landing. Note the parachute underneath the tail asembly.

"Obsolete planes never should leave the ground," says Major Arnold in commenting on wise laws requiring licenses and inspection. He urges drastic action to make flying safe.

Needless Crashes Are Hurting Aviation

IT HAS not heen wery many years ago since everyone connected with aeronautics ayrend that the pilot was responsible for 90% and the airplane 10% of the safe flights made by an airplane. Since that time the inventive genius of hundreds of engineers has been working on the mechanical side of aviation. The airplanes have been improved until they will almost fly by thrmselves under ordinary circumstances. The engines have been redesigned and constructed with better quality of material. until they seldom if ever fail in the air without giving the pilot an opportunity to select a suitable landing field.

Various and sundry accessories have theen developed to insure the safety of the pilots and passengers. Parachutes which open in a trifle over three seronda are available for ewryone. Instruments are incorporated in the airplanes which make it possilile for pilots to fly through rain. clouds and cven fog and rearh their destination safely.

There was a time when a student aviator was turned foose to fly ly himself as soon as he could make a safe landing. During the past fow years the approved prinriples of instruction provide that the instructors teach the students every-

THE editor of this department, Major Arnold, served as Assistant Chief of the entire American Air Service with the rank of Colonel during the World War. Later he became Chief of the 9th Corps Area, He is a veteran flier and a pioneer in aviation, universally known and liked. In line with the Modern Mechanics policy. "edited by experts." Major Arnold will personally pass upon the merit of all contributions to "Plane Talk."
thing possille to provide against the student ews getting his plane in a position from which he connot extricate himself. There was a good reatson for the early instractors turning their students loose to fly alone with so little instruction-the instructors knew but little more than how to take off and land themselves. Things are dillerent now. however. for years of flying have demonstrated that there is no position which the airplane can fall into from which it can not be extricated.

In spite of all these improvements in the art of flying: there are still far too many accidents. Naturally as long as airplanes are mechanical devices there will be failures of different parts at some time or another. These failures can be greatly eliminated by proper inspection of the airplane and engine prior to llight, or better yet at regular prescribed intervals. The failures of the pilot can not be elimimated so easily.

There are Federal las-4 now which require both pilots and airplanes to be liscosed if they are moing to engage in certain kinds of flying. However these laws could not be made sufliciemly drastic to require all planes and pilots to come under the Federal inspection system. Consequently there are many antiquated, obsolete airplanes being
flown today which should never leave the ground.

Fortunately most of the airplane companies have accepted the present day system and require frequent inspections of both airplanes and pilots but there still are a few of the careless type of pilots operating and too frequently the newspapers contain accounts of the results of their carelessness.

For the good of aviation, which has advanced by leaps and bounds since that master pilot Lindbergh came into promi-
nence, we sincerely hope that all pilots and owners of planes adopt the Federal inspection system even though they are not required to by the strict letter of the law. If these unnecessary accidents continue, a time will surely come when all aviators will be compelled to comply with the regulations regarding inspection of airplanes and competency of pilots regardless of the kind of flying being done. It may take some such drastic action to make flying safe for everyone.

Helicopter Airplane Tested in Berlin

Four helicopter blades are intended to lift this machine into the air.

THE n.w type of flying machine shown in the picture is equipped with a huge four-bladed propeller mounted on the fuselage just in front of the cockpit.

The big propeller is designed to lift the: ship into the air, while the blade in fromt is of the regulation type to give the machine forward motion. The extremely short lower wing is a noticeable feature of the machine, a large wing area being unnecessary because. of the lifting power of the helicopter blades.

The ship is of Spanish design. It has theen flown by the English aviator, Col. Courtney, at the Tempelhof Airdrome in Berlin, where the inventor is carrying forward his experiments.

Wartime Air Engine Converted

BY THE substitution of nickel-iron cast cylinders and aluminum alloy cylinder heads for deteriorated water jacketed cylinders the war-time Hall-Scott A 7 A four cylinder motors have lreen brought into line with the latest ideas of air-cooled airplane engine design.

On a bore of 4.5 inches, a stroke of 7 inches, and with a compression ratio of 5.3 to 1 , the motor develops 110 h . p. at 1,550 revolutions per minute. It weighs 375 pounds.

Full forced lubrication is used, the motor base holding sufficient oil for six hours' duration as a wet sump engine. The base, by means of an auxiliary oil pump, can be used as a dry sump engine with separate oil supply. The crankshaft is five-bearing, backed by steel-backed main bearings at-
tached to the cylinder head by long steel through-bolts, thus relieving the crankcase of all explosion strains.

This Hall-Scott engine is brought up-to-date by embodying lateat improvements.

Aluminum alloys play a prominent part in the new conversion. The aluminum sylinder heads, of spherical chambered type, have bronze valve cages set in. Pistons are of aluminum alloy, and are floated on
the wrist pin. There are three rings in the piston heads. The base, containing the double ball thrust which allows the motor to be used as tractor or pusher, is also an alloy of aluminum.

Milk Counteracts "Wing Dope Poisoning

MEN who apply "dope" to airplane wings in commercial and government factories are required to drink from one to three quarts of milk daily to counteract the injurious effects resulting from unavoidable breathing of the fumes given of by the "dope." Wing "dope" is the same sort of liquid as the familiar New Skin compound which is used to put a collodion coating on cuts and bruises.

Airplane wing "dope" dries almost on the instant it is applied, drawing up the fabric as tight as a drum-head. It gives off fumes with a characteristic pungent odor similar to banana oil, which if not counteracted by milk drinking tend to bring about early consumption in those exposed to the fumes.
The counteracting effect of the milk is explained by the fact that fatty particles adhere to the throat lining, where the lactic acid interacts with the inhaled fumes to make them harmless.

These factory workers drink milk to avoid contracting tuberculosis.

Man-Made Gales Help Airplanes Land

HUGE fans which can whip up a 65 -mile gale that will act as a brake on landing airplanes will be the next piece of equipment installed in the modern airport, according to experimenters.
Aviators have long known that it is easier to land in a stiff breeze than in still air, and

it is proposed to take advantage of this fact by arranging twelve to twenty fans on the landing field to supply an artificial gale.

The fans would be arranged at the end of
the field to cover a section 200 ft . wide and 90 ft . high. The air would be driven through a screen of steel bars one inch wide and two feet apart. This screen would serve to break up the eddies of the air.

Flying into this man-made breeze, the aviator would be able to land in the small space of a city block. or even on top of a moderate sized office building.

The fans would be equally helpful in aid. ing the plane to take-off. for the angle of the ascent could be increased from 20 degrees to 50 degrees with a 65 -mile gale furnishing lifting power for the wings.

By cutting down the space necessary for a plane to land, department stores will be able to maintain landing facilities on top of their buildings for the convenience of shoppers. This would aid immensely in popularizing the airplane for everyday uses.-Science Service.

How the $S-4$ © Cight

Jim Frazer, fimous Navy diver, who helped raise the ill-fated S-4.

FORTY men were facing death in the wrecked submarine S-4. Above them the Paulding, which had cut through the submarine's hull, radioed frantically for help.
Yet, from the moment of that terrible crash those men were doomed. They knew it; Navy men knew it. Four months had it taken to raise the S-51 when the City of Rome sent her helpless to the orean's floor. It would take months to raise the S-4.

And the whole nation, reading of the disaster with horror, asked "why can't they be saved?"

The angwer was simple enough; they couldn't be saved because there, was nothing to save them with. A submarine is a machine of war, not a peace device. It is not equipped with the safety factor uppermost in the minds of designers.

Everything was done that could be done under the circumstances. Divers risked their lives in those icy waters. Submarine tending ships fought the storm and high waves in order that the hopeless work could proceed. Tunnels had to be blown under the hull by a powerful hose boring in the mud. Chains had to be attached, pontoon: lowered and put into place-a gigantic tash even in calm weather.

There were no inlets in commission that could provide the men with life giving airThe control room, as usually happens, was the first to be flooded, and the men were trapped in the extremities of the ship.
©INCE the tragic loss of the S4 and all its crew another submarine catastrophe has shocked the worldthe sinking of the Italian submarine F-14. What can be done to save the victims of these crashes? Modern Mechanics presents here one solution, devised by James Frazer of the U. S. Navy, which has the merit of providing prompt relief.

Hence the airlock in the control room was of no use. The internal bulkheads, separating the submarine into compartments, had failed as safety devices. Because of the shafis that pass through these bulkheads they always permit water to seep through, and this was what hastened the death of the thirty-four men in the S-4's engine room.

While part of the crew remained alive the whole nation seemed to suffer with them. From far and wide came not only frantic pleas to rescue the doomed men, lut scores of suggestions as to how to do it were presented as well.

Hape Been Rescued

 by James Frazer Chief Torpedoman U. S. NavyHaving been the assistant diving supervisor in the salvage work of the S-51, which, was rammed by the City of Rome, I was sent to the scene of this latest submarine disaster. I listened to many of the desperate plans proposed, and the Navy withheld mothing in the way of assistance to those whose schemes had the ghost of a chance to succeed.

An Indiana mechanic wired that he had a device which would save the entombed men. A destroyer was sent to pick him up and bring him to the spot where the S .4 had gone
 sliding gate valve used on hull.

Sealing the gasket to the suction tube. Communication with the stricken vessel gives light, heat and air to the crew.

Details of the Salvage Device

down. If. saw the mountainoles nates, ad mitted her had never been of the ocean before and "had no dea it was like that!" He left his device in his hage and went homes.

A botanist proposed that flowers the thrust into the torpedo room, on the theory that the men within could turn electrie lights on the flowers, which would abivorb cartion monoxide gas and five ofl oxyen.

Another plan proposed that battleshipa be anchored over the spot, with their sterns toward the sunken craft. Chains would the attached to the submarine and fast•ned to the propeller shafts of the battleships. Then the engines could be set to turning, and up would come the submarine.

Even that incredille plan was given cor sideration, but a submarine weighs then tons, while the propeller shafts could stand a atrain of only wh tons. Moreover, pontoons would do the job, once chains were attarhed, which was the higgest job.

Lifting Cranes Impracticable

The most favored scheme among those put forward called for the use of huge lifting cranes. But cranes must ride on the surface, rising and falling on the waves, while a submarine when sunk is a dead weight. One moment the cranes would be up on the crest of a wave, tugging away at full steam, and the next they would drop into a trough, the engines would race taking up slack, and the chains would snap as
allobler wave brought up on the chains too quikkly.

Those are only a few of the desperate methods sugeested for raising the sult. marine. Preposterous ideas for safety divies were to come later from every point of the compass.

It took almost three months to raise the submarine. The uperation cost thousands of dollars, and entailed the craseless risk of other human lives as the divers tunneled under the stricken submersible, sank pontoons, and attached chains. Lt. Commander Edward Ellsberg nearly lost his life when his lines tangled in diving. Diver Eadie saved Diver Mitchell's life in a bard fought batte aqainst time.

The only auccessful attempt to get air into the S. 4 was managed by coupling an air hose to the SC tube over the torpedo room. This is a sounding apparatus, and not intended for the use 10 which it wat put, and of course would have helped only the men in the one compartment.

Since the S-t disaster many articles have: treen written, safety inventions proposed, and inquiries launched, and tomorrow, if the sister ship of the S-4 went down, we would face the same problem, with the same handicaps.

Something must be done to reduce the dangers of submarine work. Every emergency can't be provided against, and there will be future losses-but certain steps can

The stern of the U. S. S. Falcom, Uncle Sam's salvage ship. Here the oil stored in the S-4 il being transferred to tanks aboard the Falcon, through the salvage hose shown going over the rail on which the sailor is sitting.
time, along with many other plans which must all be carefully considered by experts. This device is based on eighteen years of service with the Navy, and on considerable diving experience, so that at the outset I have eliminated some of the main objections to submarine safety devices proposed by inexperienced men. There are several facts which must be borne in mind when designing rescue apparatus.

These devices must not be cumbersome.

They must be simple in the extreme.

They must not interfere with the fighting efficiency of the craft.

With these requirements uppermost in my mind, a communication
be taken, and should be taken, in preparing our under-water boats against disasters.

They call our submarines steel coffins-and with good reasons. But let's give the men in them at least a fighting chance for their lives. Navy men know the risks they must take on submarine duty, and they expect no coddling; they are our fighting men, and fighting men have dangerous work to do. They don't ask for complicated con-
hatch was worked out which would prolong the life of the imprisoned men and provide an opportunity to raise the submarine by pumping her out.

Imagine a wrecked submarine lying several hundred feet below the surface. Some of its compartments are flooded; others may have been only partly filled before the leaks were plugged by the confined men.

The rescue ship locates the submarine traptions that would hamper the effectiveness of a submarine in warfare, But they have a right to expect some safety devices.

No one has a right to criticise destruc-tively-and such is not my intention. I would not speak up now if I did not think there is room for constructive opinions on the matter, and if I did not feel prepared to offer a possible solution.

My device has been submitted to, the Navy department, and will be acted upon in good

-International Newsreel. The most magnificent sight in the worldt This is said by thone who saw the S-4, pictured here, as she broke the surface after her long undersea imprisonment. Foaming sea water covering an area a block square blistered the surface as the air escaped to equalize internal pressure in the whip.

Salvage Suggestions

One of the fantastic suggestions put forward for the rescue of the S-4 was that of a florist who proposed that flowers be inserted through the torpedo tubes of the submarine and that powerful electric lights be turned on them. The ides was that the flowers moold five of orygen, it the amme time consumins poisonous carbon monozide.
and sends a line down to grapple it. A diver puts on his suit and slides down the line-perhaps within a half bour of the sinking.

Tapping noises sound under his feet as he walks along the steel hull.

Men are still alive in that compartment! He signals quickly, and a long, six-inch hose comes snaking down through the dim ocean depths. The diver grasps the hose and sets its end over a square plate on the submarine's hull, screwing it tighty in place.

Another signal, and above him the men on the tender start pumping out the hose by closing it at the upper end and forcing air into it. The diver discovers that other men are alive in another compartment. Another hose is lowered.

By this time the first hose is emptied. Within the big hose are two long pipes and a smaller one. The pipes are wound with copper wire. One pipe was used as a lead for pressure, the other as a spill pipe, when the hose was emptied of the water.

Now the diver opens the communication hatch on the submarine, or signals to the men to do so by tapping his message on the hull. There is now an open hose leading into the submarine from the tender above. Cries of relief and joy can be heard ly the men on the surface.

The two salvage hose are lowered until they reach down inside the submarine. Already the air is bad in there, and the pumps start work sending air to the trapped men. One pipe sends in fresh air, the other draws out the impure air.

Food Carried Through Pipes

Because the pipes are copper wound, and insulated by a rubber sleeve where connections are made, the confined men are able to connect them by wire to their electric radiators, which can be removed and hung up anywhere, and the electric lights. Usually the batteries go dead when the submarine sinks, due to water flooding in.

Hot food is run down the pipes as soon as the air is cleared. Then the imprisoned men, using the pipes as voice tubes, inform their rescuers as to conditions in the submarine. The water, they say, is up to their knees, but they have the bulkhead doors plugged so that no more will come
in. Other compartments report the same flooded conditions.
One of the two main pipes is lowered still further into the submarine, until it touches the floor, below the water in the compartment. The smaller pipe is connected to a pressure gauge, and then the suction hose is closed at the top by altaching the surface plate.
Once more the air pump starts operations. The pressure in the compartment slowly increases, with divers on the tender keeping a watchful eye on the pressure gauge. Too much pressure would kill the men.

Suddenly at

 the surface above the spill pipe gushes forth oily water. The pressure inside the submarine is sufficient to drive up the flood of bilge water!In other compartments the same operation is going forward. Far back in the motor room, swift deaih overtook all the hands caught there. The whole room was flooded. A diver has opened that hatch and without the aid of the men inside, has sent the pipes down so that the water can be forced out.
A sudden storm comes up-waves mount higher. It is necessary to abandon the work -and buoys are anchored to the hoses rising from the submarine. The storm abates and work is resumed.
Abruptly, great bubbles rise from the bottom of the ocean, bursting whitely on the surface, and sending water upward in fountains. The submarine has stirred-it is becoming buoyant!

In spite of the great gap in one of the compartments, which cannot be emptied of its water, the craft is slowly rising to the surface. The pumps work faster, and more

A dramatic moment in the raising of a sub. The nose of the S-51, sunk a year before the $S-4$, is here shown as her bow lifted to the surface for a moment, only to slip away and be lost again!
water spills out. And then the submarine breaks the surface of the water. The men are saved!

Grappling chains hold the craft fast, and it is towed ashore. The steel hull, meanwhile, is being drilled through with torches, and already one compartment has been opened, and the men released. They walk along the floating submarine and climb aboard the tender as they are towed toward shore.

Saved by a 5 -inch Tube

How has this been accomplished?

By the use of a simple hatch over each compartment, and on each side in ease the boat lies on its back, or side. The hatch can be removed either by the diver, or the men inside. The hose that is connected to the hatch may be four to six inches in diameter, of the noncollap sible type. Inside
the big suction hose are the salvage hoses, or pipes, wound with copper so as to be conductors of electricity.
The hull plate is matched by a surface used on the surface end of the suction hose, to close the hose tightly. Then the salvage hoses clear the main hose in the manner already described. Two $11 / 4$-inch nipples provide openings for these pipes on the surface plate, and another nipple provides for a place where a gauge can bo attached.
This gauge, showing the air pressure, is used when there is an opportunity of raising the submarine without resorting to pontoons. Attaching pontoons at this time, since the submarines have no lifting eyes, requires tunneling under the craft with a huge water hose. This hose spouts a hig stream forward, and five rearward, so as

-International Newareel. This submarine mother ship is the type used in raising the sunken Italian submarine P-14. The huge ship straddles the submarine. It is provided with powerful lifing crames.
to enable one diver to handle it. The hose having dug the tunnel, the divers crawl through it, dragging wires after them. The wires then carry the chains through to form a cradle for the craft.
When the submarine has been lightened sufficiently to begin to rise, the gauge is watched with exceeding care. As soon as the craft floats, the pressure must be alowly diminished so that the men inside can be released under normal atmospheric pres. sure. This is done by reducing the pressure, according to the ganges, by slow degrees. If the men were brought from high pressure into normal pressure, they would suffer the dread tortures of the "bends."
Electric radiators heat the submarine, and if the battery compartment is flooded, as was the case with the S4, the men are left without light or heat.

Now, by wrapping the pipes with copper, and insulating them by means of rubber sleeves at joints where salvage hose is connected, electricity can be conducted into the submarine. Radiators are detachable, and these can be hung above the flood line, wires attached to the copper pipes, and heated. The electric lights may also be wired in the same fashion.

I have omitted technical details which may confuse the reader, but these have been worked out so that there is nothing left unsolved. The device is simple, and it will work. After the water is out of the hose, which is flexible but non-collapsible, you have the same effect as looking down a well, and with this direct communication all manner of rescue plans could be carried out if unforeseen problems arose.

X-Ray Detects Disease in Mummies

- Photo by Field Muscom. This mummy of Tediamon, Egyptian boy of the seventh century B. C., shows how joints were broken and arms left out in the mummifying process.

THE X-ray is the latest instrument of science being empolyed by experts in photographing Egyptian mummies to determine the nature of the diseases which ravaged the ancients. The above \mathbf{X}-ray of an Egyptian boy's mummy is interesting in its disclosure of the fact that he suffered from malnutrition. Scientists determine this from the irregular development of the ends of the long bones, indicating deficiency of
calcium in the diet. Photographs of other mummies show distinct curvatures of the spine. Teeth condition is also studied fron the photographs.

The advantage of the X-ray is that the bone structure of the mummies can be studied without unwrapping the body, with the consequent lowering in value of the mummy as a muscum: specimen.

THE DADDY OF THEM ALL

AGERMAN watchmaker has constructed an alarm clock that is almost a yard high. When the alarm goes off it sounds like a boiler factory in full activity, according to the designer. An idea of the immense size of the clock may be gained by comparing it with the regular-sized timekeeper in the watchmaker's hand. Note the second set of figures under the hour numbers, running from 13 to 24. making the clock conform to the 24 -hour day in use in some parts of Europe.

NO WATERWORKS IN KEY WEST

Rain water collected in cisterns is used for drinking purposes in Key West, Florida, said to be the largest city in the United States without a waterworks system. The population of 20,000 hopes to tap a water supply from artesian wells; failing in this it is necessary to go 120 miles to the mainland of Florida for potable water. Wells drilled to a depth of 60 feet strike an inexhaustible supply of galt water which is used for fire protection, but is useless for human consumption.

Hurricanes Test Airplanes in Wind Tunnel

TERRIFIC wind blasts created inside the world's largest wind tunnel, shown above, made it necessary to build the structure of heavy battleship plates to withstand the tremendous pressure. The tunnel is located a: Langley Field, Virginia.

Model airplanes are mounted on special pedestals inside the tunnel and their reac. tion to the artificial wind gusts is carefully
observed and recorded by means of delicate instruments. Latest advances in aerial engineering are tested in the wind tunnel before they are incorporated in man-carrying planes. Observation windows of special shatter-proof glass are cut into the steel shell of the tunnel so that investigators can keep an accurate check on the peculiarities of various airplane models.

-International Newareel.

luminous license plate

Identification of motor cars at night is made easy by an illuminated license plate being introduced in Melbourne, Australia. The license figures are imprinted on a glass plate behind which is a powerful electric lamp, which shines through the figures and makes the license easily read on the darkest night. Compulsory adoption of such plates is expected to aid in the after-dark detection of hit-and-run drivers and other motor car offenders. The picture at the right shows the inventor with his license plate attached to an automobile.

New Camera Photographs Chicken in Egg

-Ibternational Nienasol.

HEARTBEATS of an unhatched chicke: inside an egg can be photographel with the marvelous new camera machine invented by Carl Dame Clarke, medical illustrator at the University of Maryland. The inventor is shown in the picture at the left focussing the microscope attachment of his machine on an egg. The device is a combination eight-day clock, motion picture camera, and powerful microscope. Activities of germs and the growth of flowers can be photographed in motion by the delicate camera.

Film in reels, similar to ordinary movie film, is actuated by the clock mechanism so that pictures are automatically exposed at predetermined intervals. The object to be photographed is enclosed in a dark chamber and a powerful light turned on under the base on which it rests. The machine is expected to be of great value to scientists in studying the secrets of nature.

BOLIVIA. WITHOUT SEAPORTS. TAKES TO AIR

BOLIVIA, the only country in South America without a seaport, is developing an extensive Air Service to connect it with the outside world. A fleet of Junkers airplanes was recently christened at La Paz. Flying in Bolivia requires pianes of high efficiency because of the rare mountain at-
mosphere, the country being one of the loftiest in the world, with an average elevation of 12,000 feet above sea level. The country lies between three of the highest peaks in America, which airplanes must fly over to reach the outside world.

Christening ceremonies for the new Junkers airplanes added to the Bolivian Air Service are pictured above.

What Makes the By William F. Crosby Electrical Expert and Radio Engineer

Abstract

Millions of people have heard and seen the new talking movies, but the theater-going public knows little about the mactinery that makes this form of entertainment possible. In this article Mr. Crosby writes authoritatively of the development of the talking movies, being an electrical engineer who has made a study of the sound devices.

sPEECH reproduction as an accompaniment of motion pictures has been perfected to such a degree that the common variety of silent movie promises to become something of a rarity. Even the

This enlarged reproduction of a atrip of "talling" film show the sound track running along the left eide, through which light is projected to operate the talleing device.

100 -seat side-street theater will soon be able to cast out its old mechanical organ and give its patrons the same high quality musical accompaniment that distinguishes the presentations in the largest movie palaces.

There are several different systems coming into wide use and many motion picture theatres throughout the country are being equipped with such apparatus as quickly as possible. Within a year nearly all of the major pictures and many of the minor ones will be available with means of reproducing either musical accompaniment or the voices of the actors. The talking movie systems are all closely allied and the differences in quality seem to be largely matters of personal opinion.

There are three major systems of movie voice reproduction. Briefly, these are: the film on which the music or voice is photographed directly; the use of a record which is operated in synchronism with the motor of the projection machine; and the third system which is not operated in synchronism but is manually operated by a trained expert.

Photographing Human Speech

The first system is probably the mose interesting of them all, for it is here that sound waves are turned into light and then back to sound waves after passing through apparatus as electrical waves. The entire suocess of this system depends upon a little devise known as the photoelectric cell, a device not much larger than the vacuum tules used in most radio sets. This photoelectric cell is sensitive to light rather than to pulsations of electricity. The tube itself is entirely enclosed in an opaque covering
except for a small window through which a beam of light is directed. When there is no light the cell has the property of conducling full electrical impulses, but as the light gains in intensity the current drops off accordingly until, at full brilliance. there is no flow at all. Its response to each graduation of light is instantaneous.

Suppose that the camera is set up and we are ready to take a picture by this method. If recordings of the actors' voices are to be made, it will be necessary to set up supersensitive microphones about the studio, arranged in such a way that we can cut in or off instantly any group of "mikes." If the musical accompaniment only is to be made, this work will not be done until after the picture is finished and ready to show, when the usual score will be made and the music run off at a showing of the picture.

The sound is picked up by the microphone and is amplified in a device which is almost exartly like the ones used for radio purposes, except that it is larger and incorporates much finer apparatus than is usually found in such devices. These instruments represent just about the highest degree of manufacturing skill.

If there are several microphones to be used, each will have an amplifier and a cuntrol by means of which the operators can handle the situation from outside the "set." All of these amplifiers then feed into a "mixer" panel where there is usually another amplifier and the resultant of this device is then brought to a device which operates something like the merhanism of an ordinary dynamic loud speaker, exrept

Movietone productions use this simple artachment on the projecting machine. Details are shown in the diagram on page 114.

This projecting machine is equipped for sound reproduction by both dis: and film methords. The sound madchinery is enclosed by the iron railing.
that instead of reproducing sound, the vihrations cause a highly polished metal surface to move in exact accordance with the impulses.

Light Turned Into Sound

A ray of light reflected from this polished surface is photographed on the film along with the action of the picture. The entire musical or audible part of the film is concentrated into a strip on the edge of the film, this str'p being only one-eighth of an inch wide. It is called the sound track and when the film is developed and the prints made, each one will have the music or voice printed along with it as a part of the film itself. The sound track will appear like a lot of fine horizontal lines ranging from light to dark according to the accompaniment.

In the projection machine, used to throw the picture on the screen, a strong arc light passes through the film itself and thus projects the picture as desired. The sound track is acreened off from this light and another and smaller light, called the exciting lamp, casts its beam through a care-

Three Methods of Sound Reproduction

fully regulated lens and thence to the sound track. It passes through here in quantities in exact accord with the number of horizontal lines, to the photoelectric cell where the light ray is again converted back to electrical impulses which are exactly like those that came from the microphone and in accordance with the theory of the photoelectrie cell as already explained. This part of the equipment mizht be likened to the detector in the radio recriving set.

This simple fluctuating electrical current will ehange with ewh thange in light and shade in the film and it is a simple matter to feed the electrical output of the photoelectric cell into a line amplifier where it is eventually sent nut on a wire that runs back stage to a series of especially designed loud speakers. far larger than anything used for home radio entertainment, yet almost exactly the same in shape.

The output of the amplifier may be sent

Details of the mechanism used in projecting sounds that have been photographed on the film are shown in this dia-
gram. A picture of the attachment will be found on page 113.
through several of these speakers at the same time, giving the effect of great depth of tone. The speakers are placed in back of the screen, which is opaque enough to permit the picture to be fully visible yet hay the property of permitting the sound waves to pass throughly freely, thus giving the effect of sound aciually emanating from the lips of the shadow figures on the screen.

Speed Must Be Regulated

Ordinarily, film is exposed through the camera at a somewhat slower speed than the rate used in projection but, obviously, with this system it is necessary that the film should be run at equal speeds on both occasions. Speeding it up in projection will cause distortion in both voice and music. The same thing applies to an ordinary phonograph where, if it is speeded up too far beyond the normal speed of 80 revolutions per minute the music will become shrill and high pitched, entirely unlike the original reproduction.

Another popular method of securing somewhat the same results makes use of an especially made record which operates along lines somewhat similar to those of the ordinary household phonograph. Here, too. microphones and amplifiers are used, but the sound is impressed upon a master record from which other records may be made as needed.

Ordinarily, the reproduction of sound from the record thus made, would take place with the tone arm and horn, but this would be impractical for it would mean that the apparatus, including the horn, would have to be placed in the projection booth, thus destroying
much of the illusion. If the machine were assembled back-stage in the theatre, it would lee next to impossible to have it rum in synclironism with the projection machine.

Magnet Regulates Sound

Again electrical engineering has come to the rescue with a simple little device which is really a generator of minute electrical vnergy. An exceedingly small horsewhoe magnet forms the basis of this device, and lretween the poles of the magnet a small coil of wire is so fixed that the needle in travelling over the bumps and hollows of the record will cause a slight movement of this wire coil. The result is a small electriral current which is in exact accord with the original sound reproduced and a great improvement over the older types of nonelectrical sound boxes.
Best of all, the output of this little mag. netic unit may be fed into two wires which may be led anywhere to an amplifier and thence to the usual array of loud speakers. Thus the tone arm is done away with and the output of the record may be brought to any point where a wire may be run. The device is as simple as it is effective and is leing widely used on modern phonographs by leading manufacturers.
This type of record runs in exact syn-

Horns as tall as a man are placed behind the silver screen. This is one of the giants which the audience never sees, but which is vital in making the movies talk.

In this strip of "talking" film the microphone used in recording voices can be seen in the lower left corner.
chronization with the projection through a turntable which is geared to the same motor that runs the projector. The records are not of the standard variety, but are somewhat larger and are designed to revolve at a much lower speed than usual, thus making it possible for one record to last throughout the showing of a reel.

Records Are "Faded"

The change from reel to reel and from record to record is accomplished through the use of two projectors and, of necessity, two turntables, with a device known as a "Fader" which, as the first record nears its end, permits the first one to be faded out and the second to be faded in just as the change in film is made from one projector to the other. The music at the start of one record will overlap the music at the end of the other making it possible for an experienced operator to make the change from one record to the other without the audience being aware of it. This same fading idea has been in use for a long time in shifting from one film to the next so that there shall be no break in the continuity.
Another method, and one that is closely allied to the one just outlined, is called the non-synchronous system in which the record is turned on an entirely separate turntable at speeds in accord with the requirements of the film. This is work for an expert operator, but the system has heen in success. ful use for some time.

This record is "cued" so that the opera-
tor can tell where it should be changed if necessary, and it has the added advantage that the operator does not necessarily have to be in the projection room, but can be anywhere in the theatre so long as he can see and hear what is going on. It is also unnecessary to have special low speed records for this work, and some of the phonograph companies are already turning out such recordings to go with certain pictures.

The ordinary theatre orchestra may be played for a certain part of the film, but during the most exciting parts it may be desirable to have the voices of the actors heard instead of stopping for sub-titles. Through the non-synchronous system this is possible although it may be adapted to the other systems as well.

Talking Doubles for Actors

Continuous music may also be had through this system by the use of two turntables arranged so that the operator can fade from one to the other and, through a simple speed control, be enabled to regulate the speed to conform perfectly with that of the record. Special guides are sometimes used by means of which parts of the record may be picked out at will. Of course the same amplifiers and back-stage loud
speakers are used with this system as in the others and many theatres are equipped to use any of the three systems according to the film being shown.

In addition to these uses, the line amplifiers and speakers may be connected to a microphone in the manager's office, thus permitting special announcements to be made audible to the entire audience. Should the theatre be poor acoustically, the use of a microphone on the stage will add greatly to the audibility of vaudeville acts or special presentations and since the loud speakers are usually mounted on easily portable towers, the problem resolves itself into a rather simple affair.

These various systems and their closely allied kith and kin are generally pronounced by experts to be far superior to anything heretofore available. The entire industry is rapidly taking up the work and inside of a year or so it is predicted that the better films will have musical accompaniments equal to the finest theatres of the land. Just what will happen to some of the most popular film stars when it comes to recording their voices is a matter of much speculation and it may be more than possible that there will be "doubles" employed solely to give a fine speaking voice to some otherwise handsome idol of the screen.

Tourists Carry Swimming Pool

Thia giant bath-tub is a portable, collaplible swimming pool degigned for tourist campa.

SUMMER camps are equipping themselves with the latest luxury for auto tourists in the shape of swimming pools which can be erected anywhere, ready for use when filled with water. The portable pool, which looks like a giant horse-trough, is manufactured of waterproof fabric stout enough to resist the water pressure. Light metal buttresses are used to support the sides of the tank. It is possible to swim in the heart of a desert if this tank and enough water to fill it is carried along.

ELECTRIC MOTORS POPULAR IN FRANCE

Twenty-five manufacturers turn out beIween 200,000 and 225,000 small electric motors yearly in France, according to figures recently published.

Single Tree Furnishes Lumber for Church

WHEN they decide to build a new church out in Santa Rosa, California, members of the congregation go out and select a likely young redwood tree and cut it up for lumber. If the church is of average size, like the one in the picture, the chances are that enough lumber will be left over from the single redwood to start a parsonage for the pastor. Only two-thirds of a redwood tree was used in constructing this California church, and when the roof was finished it was found that 60,000 shingles were left over.

The building is 60 feet wide, 100 feet long, and the spire rises 100 feet in the air. In addition to the main auditorium seating 400 people, the building contains a large study for the minister, a vestibule, and a parlor with a seating capacity of $\mathbf{1 0 0}$.

Families planning to cut down the cost of building their own homes by planting redwood trees in their back yards arr warned that it takes several thousand years for these giants of the forest to mature.

SCREW HOLDER MADE FROM OLD COIL PARTS

There is an endless variety of serew holdcrs or devires to grip and retain screws while inserting them in inaccessible places.

Some holders have more mechanism than a printing press. The photo shows a simple affair made of two old vibrator hammers from a Ford coil box. The points are re-
moved from the outside edge of the circula: end and a small rivet put in to hold them securely together. The bridge ends are cal off and down to a driver point to take th. screws. A nad of paper or sliver from a match is wedged between the riveted halve . spreading them out to get the spring nece-sary to hold the screw. It is a light affair for small light screws, found in everything from the radio to the washing machins. and parts for making it are readily obtained.

HUMAN NERVE FIBERS EMIT LIGHT

It has long been known that certain lightemanations from iving plants and animal. can effect photographic plates. Latest di: coveries of experimenters tend toward th theory that the nerve fibers emit a feebl radiation which is-beyond the visible spertrum when the nerves are at rest, but which is transformed by fluorescence when the: nerve is stimulated.

Divers Get Wireless Messages

Huge diving suit built for work far below ocean surface carries broadcasting set and headphones for communicating with tenders.

R UILT for working under water at depihs where the ocean pressure would collapse an ordinary suit, this diving oulfit is equipped with a small wireless broadcas:ing and receiving set.

The diving apparatus recently tested looks like some futuristic monster of the deep, but is said to be a practical solution to the problem of salvaging sunken treasures far below the surface of the water.
The wireless set enables the diver to send and receive messages without the hindrance of telephone wires to hamper his work.

Abstract

The editor of this department, Charles Magee Adarns, is a nationally known radio expert who has been advising anateurs for years how 10 get the best service out of their sets. If your receiving set requires the advice of a radio "doctor." or if you wish any information concerning the operation of your radio, send your questions to Mr. Adams in care of Modern Mechanics Magazine.

Extension Cords for Loud Speaker

WHEX a recriver is equipped with a separate londspeaker lans find the use of an extersion cord quite convenient since it permits the speaker to be moved to any purt of the house.

It has often hern assumed that such an -atrion cord decrases volume by introJa ing resistane in the peraker circuit. but experienes has shown that the loss of whleme caused loy using the longest standadd rords cannot be detected loy the ear. since the cord's resistance is so small rompared with that of the speaker windings as (., Ine nergigille at the high phate vologere new ased in last audio tulecs.

Acoodingly. it is economical to huy a "rat of the geratort longth that will be rended. When it is desired to use the spakir in locations not requiring the entire l.neth the slack ran loe cuiled up out of
the way "ithout frar that volume is being sacrifiedd.

The ward hould be well insulated, pref--rably with a rublere cowrine adjatent to the wiras hiv to prevent pemillite short circuit in case of arvidental wetline.

The conmeros at the spraker end should be of a typ that rempletely theloas the: cord tips. There will then lie no risk of short circuit or shork.

It is recommended that the cord lee kept off the floor at points where it is likely to lee supped on. Suh triatment would damager looth due insulation and the sulall wires of which the condertor- are made.

Ordinary lamp cord may lay substituted for the rewelation praker cord with fairly satiafactors roults. But its priere is gencrally wate and ther wifl be the complication of mahing proper commetions with the spraker cortotijes.

Clean the Ground Clamp

0NCF it has lien madr. mont fans forget the connection betworn a radiu receiver and the water pipe which forms the usuat -round. But this needs attention siveral limps a year, because the oxidation which lathes place will othernist imerease the resistance of the contart and reduce the cfflfiency of the installation.

Rumber the wrond from the pipe and bring berls its imede surface and the outer fine sampaper or emery choth. Then replace. lishteniner the clamp securely.

The fres minutes required will ler amply rewarded by zroater wolume and increased sensilisits on distant stations.

Cleaning the A Battery

THE, most disagreeable by-products of a storage A battery are the dirty gum which coats its top and case, and the corrosion of terminala, both caused by the acid spray given off during charging. The casiest and most effective way to remove these and prevent thrir further formation is with a damp rag.

Disronnect the wires or clips from the terminals. Screw down the went caps on the crills snugly. Moisten a bit of clean rag with water (it need not be distilled). and wipe off the entire urface of the hat
tery, including posts and connector bars. When it dries, the result will be a spick and span battery, free from gum and corrosion. Repeat the process whenever charging has covered it with more spray.

It will then be unnecrssary to use greasor vaseline on the terminals, since there will be no corrosion.

Do not use soda or ammonia. If either leaks into the cells, the price will be that of a new battery. Be sure to use a damp rag. A dry one will not absorl, the acill properly.

A Note on Filament Ballasts

THE advent of A type power tubes 4112 A and 171A) has introduced a littie complication which must be tahen into acrount by set users who purchase them.

These lubes consume only a quarter ampere of filament current, whereas the tubes they replace the 112 and 1711 consume a half ampere. This means that when the A type is substituted for the latter. there must be a corresponding change in the filament ballast employed.

With the 112 and 171 a half-ampere bal-
last is used. But should this be left in the circuit to control a quarter-ampere tube, it will permit the voltage reaching the filitment to be excessive, thus shortening the life of the tube materially.

It is therefore important that a quarterampere ballast, like those controlling the 201A tubes, be sulistituted at the time tubes: are substituted. If a single ballast is used to control all the audio frequency tubers, as is ofton the case, this should be replaced iy a onf-quarter ampere smaller in capacity.

A Simple One-Tube Receiver

TWE one-tube receiver shown in the accompanying diagram is inexpensive. simple to cunstruct, selective, and a good distance petter.

In addition to the parts indicated, there will be rectuired a panel 7 by 10, a baveboard 6 ly 9, 7 binding posis, mounting brackets, hookup wire, and the tube.

Drill the panel so the tuner will come at the left and the variable condenser at theright along a center line. with a rheostat between and below. Place the bincling posts along the rear edge of the baseboard and the socket in the ernter. Mount the three panel instruments; fasten the panel to the bas-board, and connect.

A 199 tube gives good results. The A battery for it should consist of three dry cells in series, and the B battery a 45 -volt. Grid leaks of from 3 to 6 megohms should
be tried, and the one uspd which gives smoothest oscillation.

This diagram illustrates the "hook-up" of an easily made, inexpensive one-tube receiver.

RADIO POWER from the FARM LIGHT PLANT

Some simple methods of connecting radio batteries with the farm light plant to afford a convenient and steady flow of power for the set are explained in this article.

DLRING the past year more and more radio receivers in citios and town- ${ }^{-1}$ have had their power supplied from the alternating current light lines. On farms where such current is available the sane change has also taken place. But on many other farms electricity is wenerated by small direct current plants, and here the standard a. c. sets are, of course, usiless. However, such farm plants can be made to supply part or all of the power for operating a battery type rectiver, at small trouble or expense and with a considerable gain in convenience.

Farm light plants are divided into two gineral types, 32 and 110 -volt. The 32 volt consists of a storage hattery of 16 cells charged by a penerator, and this batirry forms an admirable source of A or filament power for the radio set.

Two methods of utilizing it can be fotloued. In the first iFigure 1 I a resistance mint is ronnected in series leetween the lighting circuit and the rectiver's A posts, to reduce the 32 volt supply to the 6 required by the set. Such revistanes units are being made by sevaral manufacturers, and all that is required in addition is a suitable plug and cord for connecting to an wutlet on the house circuit.

Second Method Saves Current

Honrver. the same result can be ohtained. with a savine in current. hy following thr method shown in Figure 2. Two wires are
To neqative side of 32 volt highting crrcut

Figure 1
run from the A posts of the recejver to the plant batters, and connection made asshown to any group of thrie cells by meanof clips.

Standard No. 11 rubber-covered wire should be used. and if the distane from

Figure 2
the set to the plant is more than 50 or (6) [iet. Vo. 12 or even 10 nill be better, lme. rause of the voltage drop. The wire can be simply tacked up with lapdos as in liell circuits, since the voltage rarried is low.

It is important that the clipe he shifted from time to lime to place a diferent group of thret cells in the radio current. Fior example, cells 2. 3. and 1 may bre used for a while then 6, 7. Ah then 9, 10. and 11. -He., until all have leetu used in rotation. when the promess can lee repeated from the tegenning. The purpose of this is to dis. tribute the drain of the radio over the entire baltery, instead of confining it to three cells; otherwise, they would in time be run down because of more current being drawn

Figure 3
from them than the remainder. The change should be made every two or three weeks, and it would also be well to take hydrometer readings to be sure that the cells used "come up" with the rest,

B and A Power Supplied

When a receiver so supplied is used while the plant battery is being charged, a hum will generally be noticed. But this is not a serious objection since charging is usually done during the day.

The 110 -volt farm plants are divided into two types: those employing simply a generator (such as the various automatic systems), and those employing a storage battery charged by a generator, either as the main or stand-by source of power.
The former will supply B power to the radio receiver by means of a standard d. c. B unit. The simplest form of A power in this case is the usual storage battery which can be charged conveniently by the method shown in Figure 3.
The resistance, R, can be the family flatiron, which passes about 5 amperes. Charging can be carried on while the plant is heing run for lights during the evening, if it is not desired to run it through the day for charging only, though, of course, the receiver cannot be used while the battery is being charged.

If the 110 -volt plant is one of the comparatively few using a battery, the arrangement shown in figure 4 will supply the receiver with B power at very small cost and quite satisfactorily. Wires should be run from the set to the plant as in the case of the 32 -volt system for A supply, and connections made to the proper cells by means of clips.
Each cell normally delivers 2 volts. So the wire from the 45 -volt B post should he connected to cell No. 23, the wire from the 90 -volt B post to cell No. 45, and the wire from the power tube B supply to the full baltery.

Recharging Is Simple

It is not necessary to change the clips here as in the case of A supply from the battery, since the current drawn is too small to make any appreciable difference in the charge. However, here again the set cannot be used while the battery is being charged, due to the hum caused by the commutalor of the generator.

For filament power from a 110 -volt battery plant, the usual storage \mathbf{A} is simplest and most satisfactory. It can be charged while the plant battery is being charged by the arrangement shown in Figure 5. The radio battery is connected as indicated, in the generator bus, after the switch has been opened (and be sure the switch is opened before the battery is connected, else a short

Figure 4

Figure 5
(ircuit will result). This connects the radio battery in series with the plant battery, permitting the wenerator to charge both. When it has been charged it can be discomected and the switch closed once more.

White charging lomh latteries it may be necessary to lurn up the ficld rheostat on the generator to hold the amprage at normal. But this is not difficult.

If shese simple directions are followed in, , farm light plant will be found to add ereatIy to the convenient operation of the radio art. The diagrams show clearly the melhod of makine comertions, and if they are carefully followed the task of tapping the farm power plant for current should be a simpleone, resulting in increasod efliciency of the radio set.

"C" Voltages Important

SIMPLY because a set can be made to "perk", without d: batteries, some radio fans (and not only the inexperienced) make the mistake of assuming that the grid hias voltare is a uselese frill for amplifier tubes. It is a mistake and one whose price is paid not only in inferior operation, hut in dollars and cents.

A stt will work-after a fashion-with. out C. batteries. But the tone quality will he decidedty poor, and if a milliameter is inserted in the B supply circuit it will show a very high conoumption of plate current. So it can lee seen that the purpose of C : batteries is to minimize distortion dur in the amplifier tuhes and hold the B drain to the proper figure, hoth quite desirable its modern recciers.

The ear will detect the difference in tome quality instantly when the proper grid bias voltages are used. But it requires measurements to see the saving in plate current wocured. Trats have sliown that the usw of correct C baterirs reduces the B consumption 50% to 90%.

If batteries are being used this, of course. means longer life for them and a direct money saving. If a B eliminator is being used this saving also applies to almost as great an extent. Without the proper C voltages the B unit will be overloaded, which will shorten its life materially besides increasing the hum in the loudspeaker.

Recommended Voltages Listed

Accordingly, the C voltages given in mbe specilication sheets should be followed with the same care as A and B voltages. This should lie done in the case of all amplifier tulos, and particularly power tubse, where the plate consommpion is greatest and the power is delisered direst to the loudspeaker and heme the proper grid bias in most important.

It will ber notul in reading tule speriftcation sherts that the C voltage vari's with the IS whtare. This should le kept in mind "hen the B voltage is changed for any reason.

Also, if batteries are being used to supply the C potential, they should the tested crasionally. Their life is virtually as lons as if they were standing idle. But detrrioration sometimes takes place abruptly, which may ranse trouhls.

Following are the C voltages recommended by manufacturers for the more popular types of amplifire tubes when used at usual B voltages:

Tube	B Voltage	C Voltage
201A	90	4.5
$112 A$	135	9
$171 A$	135	27
$171 A$	180	40.5
199	90	4.5
120	135	22.5

Plane Catapult Saves 18 Hours Time

-International Newartel.
Stern of the lle de France with its plane-launching entapuls in shown above. The cable which launches the plane can be seen in the picture at the right.

PASSENGERS aboard the lle de France, luxurious new passenger steamer plying between New Yotk and Cherbourg, can now speed up their ocean journey by hopping off the ship in an airplane when a few hundred miles off the French coast, the plane carrying them directly to Paris. This is made possible by a 60 -ton ratapult installed
on the deck of the steamer, which launches an amphibian plane.

On a recent test flight, the airplane left the ship 450 miles at sea and flew to New York with a mail cargo, clipping 18 hours from the regular sailing time of the vessel. Perishable express matter and other types of cargo requiring fast delivery will be carried by the airplane.

A crime-detecting movie camera is hidden inside this automatic telephone box.

BANKS PROTECTED BY CAMERA

AN AUTOMATIC movie camerd which is expected to play a big part in the detection of criminals has been invented by John E. Seebold of Los Angeles. The camera is hidden inside an automatic telephone box, where it is invisible and silent. The device will be installed in banks and other places likely to be visited by criminals, and in case of robbery the cashier can set the hidden camera going by pressing a button, getting a clear action picture of the holdup men. Pictures have been taken at a distance of 85 feet, the subjects being unaware of the camera's presence.

An ingenious chock device which drops under the rear wheels of an automobile and brings it to an almost instant stop has been designed. The chocks, or shoes, weigh about eight pounds and are fastened to the chassis.

USEFUL INVENTIONS

How often have you said, "Wish I'd thought of that!" Here are a few unusually interesting devices upon which the U.S. Patent Office has recently granted exclusive ownership. It is possible they will find public favor and reap fortunes.

SELF COOLING VALVE

When the first valve-in-head engine was produced the automotive industry considered it a huge joke. Today it is to be found in such overwhelmingly successful cars as the Buick, Chevrolet, Stutz, Oakland, and others. Proved by years of usage, it is one of the most popular internal combustion engine designs. Here is an improvement in which the cold incoming charge passes through the hollow, hot exhaust valve, cooling it and adding greatly to leneth of valve life.

Many of the most profitable inventions are those which can be sold to children, who appreciate novelty more than grewn-upe do. Here is a toy which shows a group of pictures, any one of which can be adapted by the child's imagination to be the exact image of the person to whom he is talling.

SPARE LIGHT BULB

Space at bottom of flashlight for carrying bulb.

The small bulbs in the ordinary flashlight are subjected to the most severe service to which light filaments can be put. Constant flashing, severe racking and jolting combine to make the life of flashlight lamps very short. Campers and autoists will appreciate the cleverness of the simple enlarged bottom cap in which a spare bulb can be carried, safely shielded from shock.

FIRST AID TO HOUSEWIVES

What housewife hasn't asked for a mechanical dishwasher? Here's one that can be placed in any kitchen, plugged to the light socket and connected to the kitchen sink. It will promptly wash and dry the dishes for the largest family Thanksgiving dinner ever held.

Build this PUSHMOBILE from

Detail of the tie-up between steering rope and front axle is shown in this picture.

THIS pushmobile is made from old parts which can be salvaged from almost any junk heap. It is the type seen in the late fall when the pushmobile season is on and the newspapers are condscting "Derbies." It should take not over a morning's fun to build and while very simple, it is strong and will last a long time. It is very easy to steer, and will stand a good chance of winning any pushmobile race.

If it is desired, an old Ford starter motor may be used in conjunction with a storage battery to make it an electric auto. With a starter mounted by belt and pulley to the rear wheel, the little car will have a range of about a mile and a half before the battery will need recharging.

A piece of two by four exartly 48 inches long is used for the frame. This is bored for the steering pivot bolt as shown in the diagram. Radiator and dashboard 4 inches wide and about 20 inches high are cut to suitable and pleasing shape, and mounted so the broomstck steer. ing controt can be installed,
The axles are mounted to the

Conducted by A. NEELY HALL
For twenty-five years A. Neely Hall has been getting right next to the hearts of boys throughout the country with his authoritative articles on how to make things. Each month this department will contain diagrams and descriptions of articles which can be made in your own workshop at small expense-articles which are not only fun to put together, but which are designed for practical uses.

Solitaire Board

EVERY member of the family will enjoy this solitaire board, but every one will not succeed in solving the problem of jumping the pegs until only one remains. There are seven ways of dring this, and after I tell you how to prepare the board, I shall show you the jumps to make in their correct order.

Solitaire boards can be made of wood or wallboard, and wooden pegs, marbles or

[^1]pins can be used for pegs. The photograph shows an excellent board made of a piece of wallboard 8 inches square, with glass headed push-pins for pegs. The little push-pins cost twenty cents a dozen, or fiftyfive cents for a set of thirty-three, the number required for the board. Brass-headed tacks may be substituted for the push-pins. They cost about five cents a dozen.

Wallboard and push-pins form this ingenious puzzle board.
To locate the holes in the piece of wallboard, mark off eight 1 -inch divisions along each edge, and connect opposite points with straight lines, as shown in the diagram. Then with one of the pins punch a hole at cach of the thirty-three line intersections, as the diagram shows. Stain the wallboard, or give it several coats of lacquer or enamel. It is not necessary to number the holes, as in the diagram. They are shown numbered as a key to the given solutions.

How to Solve the Puzzle

Here is the problem: Jump one peg over another, jumping lengthwise and crosswise of the board, and removing each peg jumped over, until only one peg remains.

Solution No 1. Stick pegs in all holes except No. 1. Then jump the pegs in the following order:

9 to 1,7 to 9,10 to 8,21 to 7,7 to 9 , 22 to 8,8 to 10 , 6 to 4,1 to 9,18 to 6 , 3 to 11.20 to 18,18 to 6,30 to 18,27 to 25 , 24 to 26,28 to 30,33 to 25,18 to 30,31 to 33,33 to 25 , 26 to 24,16 to 18,23 to 25 , 25 to 11,6 to 18,13 to 11,18 to 6,9 to 11, 11 to 3,3 to 1.

Solution No. 2. Stick pegs in all holes exoret No. 4. Then jump the pege in the following order:

16 to 4,1 to 9,1 li to 16,16 to 4,3 to 1, 1 to 9,6 to 4,4 to 16,7 to 9,18 to 6,13 to 11,6 to 18,26 to 12,27 to 13,13 to 11 , 24 to 26,33 to 25,26 to 24,28 to 30,31 to 33,33 to 25,16 to 24,18 to 16,9 to 23 , 28 to 16,25 to 23,16 to 28,21 to 23 . 28 to 16,11 to 9 , lis to 4.

Solution No. 3. Stick pegs in all holes except No. 10. Then jump the pegs in the following order:

12 to 10,26 to 12,13 to 11,27 to 13. 10 to 12,13 to 11,2 to 26,33 to 2.5 , 26 to 24,23 to 25,32 to 24,31 to 23,16 to 28,21 to 23,4 to 16,7 to 9,16 to 4 , 1 to 9,28 to 16,16 to 4,14 to 16,25 to 23 , 23 to 9,11 to 25,4 to 16, 2 to 10,3 to 11 , 10 to 12. 16 to 18,25 to 11,12 to 10.
Solution No. 4. Stick the pegs in all holes except No. 14. Then jump the pegs in the following order:

16 to 14,4 to 16,17 to 15,6 to 4,29 to 17, 17 to 5,2 to 10,18 to 6,3 to 11,20 to 18,18 to 6,13 to 11,6 to 18,26 to 21 , 33 to 25,21 to 26,27 to 25,31 to 33,18 to $30,3.3$ to 25,22 to 24,25 to 23,7 to 9 , 10 to 8,1 to 9,28 to 16,16 to $t, 21$ to 7 , 7 to 9, 4 to 16, 16 to 14.

Solution No. 5. Stick the peg3 in all holes except No. 17. Then jump the pegs in the following order:

19 to 17.6 , 1018.13 to 11,18 to 6 , 3 to 11,10 to 12,1 to 3,1 to 6,3 to 11. J 2 to $10,301018,17$ to 19,20 to 18,27 to 25, 18 to 30. 16 to t. 7109.10 to 8,21 to 7 , 7 to 9.1 to lo. 15 to 17.23 to 25,32 to 21. 21 to 26. 33 to 25,26 to 21,17 to 20,31 to $23,221021.29$ to 17.

Solution No. 6. Stick the pegs in all holes exerpt No. 23. Then jump the peg; in the following order:

25 to 23 . 11 to 25,10 to 21,30 to 18 , 23 to 25 , Is to 30,9 to 23 , 13 to 11 , 6 to 18 , 27 to 13,26 to 12,13 to 11,18 to 6.1 to 9, 8 to 10, 3 to 1. 6 to 1,1 to 9,10 to 8,22 to 21,8 to 22 2 21 to 23,7 to 21,21 16 22 , 21 to 23,23 to 16,30 to $20,31 \mathrm{t}, 23$, 16 to 24,33 to 31,31 to 23.

Solution Ko. 7. Stick the peres in all holes exupt to. 29. Then junp the peag in the following order:

17 to 29,26 to 21,33 to 25.31 to 33 , 18 to 30,33 to $25.61018,13$ to 11.27 to 13, 10 to $12.131011,8$ (1) 10.1419 .3 to 1 , 16 to 1,1 to 9,28 to 16, 21 to 23.7 to 21. $2 f$ to 22,21 to 23,16 to 28,23 to 30,18 to 6,6 to 4,4 to 16,30 to 18,15 to 17 , 10 to 24,19 to 17, 17 to 29.

Boat Model Easily Made
 By JOHN MURRAY

USUALLY, the first gtep in making a model boat is to glue together layers of wood in order that the edges may be whittled at the same time. This is known as the "bread and butter" method and is a wasteful system.

A new method that calls for only four pieces of wood and partly eliminates the danger of splitting wood saves much time in model building.

This boat is made from four pieces of wood. Mounting the model permits the entire boat design to be studied.

The pieces should be of standard lumber such as white pine, which does not require the usual planing to size necessary in the "bread and butter" type of construction. A piece of ordinary white pine two-by-four, some heavy cardboard and plastic wood, are all that is needed for material for a small model.

One side should be whittler first, then the counterpart on the opposite side. These halves are whittled to the "bearding line," which, as shown in the illustration, is the
line where the planking leaves the keel in full size hulls.

The profile, or outside keel line (see illustrations) is made from heavy cardboard. It is even better to use a thin piece of soft white pine planed down to the scale thickness of the actual keel. This profile is glued and nailed to both halves of the hull.

Decks can be cut and nailed to the hull. Coamings and trim may be made of cardboard. The whole boat should be enameled.

Fittings such as shown on the 9 -inch model of the 13 -foot hydroplane, "Bumble Bee" (see illustration), can be made from molds of plaster of Paris into which lead may be poured after the plaster has been thoroughly dried to prevent formation of blowholes in the casting.

This method of building a boat is recommended to those who desire to construct a small model in a short time.

Knot-Tying Made Easy

${ }^{T}$T IS hard to learn many of the knots from even a clever teacher, and it is difficult and quite uninteresting to repeatedly look at them in a book. Here is a little scheme to aid in learning.

Procure a package of the fine wire cottoncovered smoking-pipe cleaners. Take the book of illustrations of knots, and out of one or more cleaners, carefully bend the form of the particular knot you wish to learn. Be sure the knot is correctly formed and drawn. As you practice tying the knot

you have a real one before you to look at and study

Picnic Scraps Make Water Wheel

CHILDREN who become restless when on a picnic can easily be amused with a simply constructed paddle wheel. All the equipment necessary for constructing the wheel is usually found in the lunch kit.

Tin is inserted in split twig.

Tin is bent in paddle-wheel shape and ends of twig put in pop bottles.

Take the covers of two sardine cans and bend them bark and forth until four rec. tangular pieces of tin are obtained. A Hat toltarco tin or other can may be used if sardine cans are not available. Selert a
branch of green wood about one-half inch in diameter and split it down the center for about three-quarters of its length.

Completed paddle wheel is operated by current of stream.

Into the split stick thrust the ends of the four pieces of tin, two on one side and two on the other. Bind the split with twine on both sides near the tin. Now the tin ends can be hent into cup-like shape to react to the water pressure.

Take wo pop bottles and insert the ends of the stick in their necks. Place the pop bottles on each side of a small stream. allowing the tin to project down into the water. The force of the current will oper. ate the paddle wheel.

Big New Field for Engineers

Last year forty-four students were taking i) ${ }^{\text {i e }}$ regular aeronautical engineering rourse it Jassachusetts Jnstitute of Technology. more popularly known as "Boston Treh." This number, according to statisties rompiled by the Gugaenheim Fund, comprised fort-.six per cent of the number of students working for aeronautical engineering de. grees in the United States.

Of the above men, all but four were placed in their chosen profession before graduation. As compared with the opportunities in other lines of engineering, the
field of inronautios is greatly undersupplied with akilled mun with technical training. Civil and other branches of engineering have long been nvererowded. This is not true of arronautios.

Tubular Railway

London enrinecrs propose to construct a high speed tubular railway across the river Tyne at an estimaled cost of $£ 250,000$. The advantage claimed for this novel type of railway is that passengers can be carried at a high rate of aned without danger.

BRITISH APPRENTICES GET THOROUGH TRAINING

The British system of training young engineers presents striking differences to the observer accustomed to American practires. Students of the engineering trades are classed as "apprentices" and "learners." The apprentices undergo a definite period of training and receive a wide range of in-
struction intended to fit them for their professions. The "learners" do not follow prescribed courses, but on showing aptitude they usually graduate into the apprentice class. Nearly 100.000 apprentices and learners are engaged in the engineering trades of England.

Join the e Codern Mechanics Model Airplane Contest

Abstract

A handsome engraved trophy cup and a cash prize will go to the amateur flier whose model airplane wins the first Modern Mechanics Model Building Contest. Study the rules below and send in your entry.

WND up your props and get in on the Modern Mechanies Model Airplame rontest. you model builders!
The Editors have put up a beautiful, hand-engraved silver trophy cup and cash prizes for the amattur aviators whose flying models win this first competition in a series of Model Building

Contests.

Each month Monser Meghavics Magazine will sponsor a model luilding context, the puljert to lie announred in time for readers in all parts of the country to compete. The rules for the first contest, on model airplanes, are given lielow.
I. The Model Airplane Contest models mist be of the "R. O. G." (Rise Off Gromend type, driven by rublur band motors. There is no other restriction as to size or type.
2. Awards will be made on the lasis of workmanship, ingenuity, and flying ability of the models. Thr hest all-around plane. judged by appearance. soundness of design. craft displayed in adapting the working materials, and action in fight will be judged winners, and it must be understood that this is not a conteat for long distance fying models.
3. Decision of the judges, Major H. H. Arnold, and Pilot Gene Shank, will be alrcolute and final.

Model Plane Prizes

In addition to the special trophy cup, which will grace the den of the fortunate winner, a cash prize of $\$ 25$ will be awarded. Here is a complete list of the pries:

First: Trophy cup and $\$ 25$.
Second: Ten dollars.
Third. Fourth and Fifth prizes: $\$ 5$ each.

Don't spoil your chance to win by carelessness in shipping your model. Pack it securely and address it prepaid to Modern Mechanics, Robbinsdale, Minnesota.
non-prejudiced assistants in determining the winners. Bear in mind that since models will vary considerably in size, the distance they fly will not be a deciding factor.
Don't hesitate to send in your model because it may be of small dimensions. If it is well built and graceful in flight it will stand an excellent chance of winning the cup for you.
Announcement of the winners of the trophy and cash prizes will be made as soon as possible after the close of the contest, and staff artists will also prepare drawings and photos of the winner to he published in this magazine.

MODEL BOAT BUILDING CONTEST NEXT MONTH

ACUMPETITION for a silver trophy and cash prizes for boat models will be announced in the next, the December issue, of Modern Mechanics Magazine. Watch for it! At the same time details of the contest are published, a complete set of plans for building a small steam-propelled boat that will run under its own power will appear. In the meantime, be sure to enter your model airplanes in the contest announced on this page.

ACIGAR lighter that uses no flints, no liquids, and always works!
Always on the alert for new stunts and novelty. advertising men may welcome this device contrived by the staff of Modern Mechanics Magazine, which is an attention getter as well as the source of considerable amusement.
It's called the Scotch Model, for it certainly involves the minimum of expense. The material used in each lighter costs about three cents; a half cent for the matches, a cent for the candle, and the balance laid to the cost of printing the wrapper.
Ordinary brown manila wrapping paper is the best stock to use for the printed matter, which can carry a suitable advertisement in addition to the operating instructions. A small candle, preferably colored, and an ordinary box of safety matches complete the device, as shown in the illustration.

The candle should be placed close to the match box and the correct size of paper measured. Printers wrapping paste is best for binding.

Colaking a Paper Tube Plane

By T. S. ASGAARD

THE model airplane shown in the photo is built with an old mailing tube for a fuselage, wood buttons for landing wheels and has a conventional rubber motor. It weighs less than 3 ounces and can fly 200 feet.

A mailing tube about three quarters of an inch in diameter is pared down until there is but a very lit. tle of the shell left. This is then given a good soaking in shelJac. When the shellac has drind a wrapping of heavy brown paper is put on with the spiral running in the opposite direction. Another coat of shellac is applied and when this is dry, the fuselage is completed.

Then the wooden plugs which form the motor anchorages are built. These ran be
whittled, or may simply be pearl buttons with the propeller bead bearing as shown in the drawing. The No. 14 piano wire hook in the tail end is run through as shown.

The landing gear is made of big buttons. These may be filled out for a streamlik, effect with plaster of paris, which is very light and porous.

The undercarriag is made of No. 14 piano wire. It can be purchas dat any radio shop or mus, store in the form of bass guitar strings. It is hard to bend and will have to be hammered into shape, or held in a flame at the points where it is to be bent. A model having this landing gear will take a great deal of punishment.

The wings are abso made of piano wire, onldered with common household radio solder at the rils. The wing covering should be of the lightest obtainable close woven gauze. This is delicately sewed or "basted" to the frame. This must be aretched as tightly as possible without -pringing the wing frame.

Then, when the wing and tail surfaces are covered, a solution of one part of "New skin" to three parts of acetone, is brushed onto the gauze with a fine brush. When dry it will act like real airplane "dope," rightening the fabric.

The propeller is best made of a fiber blank boiled so it can be bent to pitch. Such a propeller is more nearly shockproof than spruce. The propeller for this model is 8 inches in diameter and should be of such pitch that the face of a 45 -degree triangle will face the blade one inch from the hub.

The motor is In^{n} by $1 / \mathrm{b}$ inch flat rubber of about twenty feet in length, tied in a
knot at the ends and looped about the hooks with enough tension to keep the retaining hooked buttons against the fuselage. The tail pieces are mounted as is the wing, as per the drawing.

In flying this model, while it will ris ${ }^{-}$ from smooth ground, it is best to hand launch it while first trying it out. The motor should be given no more than at hundred turns at first. The model is held supporled in the right hand, and when wind and direction have been figured, the model is released for flight.

The propelier is set spinning before launching to make sure of initial speed.

The model is given a gentle shove straight out in its path of flight, and slightly down.

There will be but few flights needed for attaining balance. The wing is moved forward or backward by the thickness of a hair until the right climb is attained. Then the modil can be used any lime by simply winding the motor.

Real Gas Engine for Model Airplanes

FLYI.VG a 9-fort model airplane for a distanee of a mile, this midget engine: wrll earned is title, "mighty atom."
It dewloped sutli-- ient prower to climb to an altitude of 200 loent in this distance. It is a two-cyele, hirer-port air cooled aluminum alloy innine which develops a half horseposer +11 a wright of ouly lirce pounds.

Througet an aluminum propeller 18 inclies in diameter this little engine has driven a 12-foot vanoe 6 miles an hour. Attached to a bicycle it has propelled a 140 -1b. man at a speed of 10

This siny motor really runs! miles an hour. It has run a boy's pushmobile at a speed of 8 miles per hour.

It is $11 / 2$ inches in bore by $11 / 2$ inches
stroke, 6 inchess in height from bottom of base to inlindre head, and but $2 \mathbf{2}$, inches betwern bane supports. The outside diamwer of the rylinder is but 21 ' i inches.

A suitalile tize of model plane for this r-ngine would loe as follous: a monoplane of nine-fort wing span with the Fokker antilever type of wing, has ing a fusplage nive iumbes square. The elevator and stadilizing unit should lee ahout there to four feet from Nie trailing edge of the wing. alunt six inches in chord, and about a foot in span. A good wing sertion would lee the V. A. C. A. No. 6 , dimensions of which can be procured from the National Advisory Commitue for Aeronautics, Navy Building. Washington, D. C. This wing section, of the thick type, has a constant center of pressure, and once the plane is balanced while at rest it will fly balanced at all angles of lift. The whole model should not weigh over 10 pounds.

Made by Dynamic Mfg. Co., of Chicago, finished parts of this motor are available at low prices, so that a complete engine with carburetor, spark coil, propeller and all equipment can be assembled with wrench and screwdriver.

Windmill Supplies FARM With Light

Electricity without cost! A simple windoperated dynamo supplies all the current needed to light a large farm, at practically no expense.

AN ELECTRIC windmill which supplies a group of farm buildings with an abundance of electric power at practically no operating cost has been constructed by C. E. and W. T. Miller on the Miller-Hills farm in Madison County, Indiana.

The energy of the wind is turned to mechanical power by a wheel tweive feet in diameter which in turn drives a dynamo with a belt running around its rim. A vane hung below in the path of the wind regulates a cut-out switch. This switch automatically connects the charging circuit when the proper amount of wind is blowing. The device practically takes care of itself, requiring almost no attention.
The vanes of the twelve-foot wheel, twenty-four in number, are hinged at one side to each spoke, and are retained by springs. The ${ }^{3}$ prings yield when the wind reaches high velocities. This is a safety feature preventing the machine from presenting too much area to the wind in stormy weather. When a wind gale velocity blows,

This wheel turns the force of the wind into electricity. the vanes straighten out, allowing all the wind to rush through, and the wheel standy still.
From the large wheel, the shrouded rim of which is one foot in width, there runs a $33 / 4$-inch bett. This drives the dynamo, charging a set of storage batteries. From these batteries the electrical energy is taken at will.

Centered twenty-one feet above ground, the cone holding the shaft on which the windmill turns, is equipped with an oil reservoir supplying oil to the Timken bearings whereon the shaft runs. The lower part of the column supporting the machine is made of nine-inch gas pipe, eleven feet above the ground. and buried seven feet. It is set in a heavy concrete block. The top portion of the column is a ten foot length of sixinch gas pipe.

The electricity stored in the batteries is sufficient to last two weeks should there be a calm period.

WORLD'S TALLEST STRUCTURE SAFE

The Eiffel Tower, 1,000 feet high, is as solid today as when it was constructed in 1889, according to a report of engineers making a periodical examination of the structure. Fears that its great weight might cause a settling of the earth beneath it are groundless.

FATIGUE BUILDS BODY WEIGHT

The strain and fatigue of marathon dancing causes an increase rather than a loss of body weight. This is the surprising discovery made by a corps of Pitssurgh physicians studying nine couples who had been dancing steadily for six days. Of the 18 dancers, 10 had gained from 3 to 7 lbs . each, 4 were unchanged, and 4 lost from $1 / 2$ to $11 / 2 \mathrm{lbs}$. each.

Building a Bench Lathe

 By JOHN MURRAY

Cast from box-lumber patterns, this ingenious bar bed lathe will saw, plane, sand and turn both wood and metal.

IT' IS the writer's hobly to desigh models of engines. airplanes and small lmats. In buitding them, a creat deal of lipht lathe work is ofirn neceswars. To do this metal turning or wood turning an claborats marhine is not uressars. hut it does require one which is liryer ruough to do respertabi, work. The design pictured liere ia that of a small bench lathe which was built for a model maker's workshop at a most of a few dollars, which went chisfly for such auxiliaries as live and dead spindles, face plate, etc. It "feels" like a much larger lathe when working with it, and it fills the writer's needs remarkably well.

It is of a size which will handle such things as small steam engine flywheels, up to nine inches in diameter, and is large enough so that an infinite variety of accesnorirs. such as milling attachments, could

he used to make it a man-size" marhine.
In conwiving this lathe an wement of play colderid. IXith the sory of the decent rastinate in mind. the writer determined to ore hon muth of : lathe conld be buile with nothing lint hi* have han:- and sobe simple - whine colve + such as a knife. Fromit an adjacent waterfrome a picce of floating boxmool "us smured, and with a jack-kinife the writer set to werk.

The woot happened to be the rommercial half-inch hox lumier which finishes seven-sixteenth inch thick. By looking at the drawing it will be scen how the thicknesses of the castings came to be multiples of this figure, and how extremely sitinple the pattern for the combined saw-stock and tai? stock were. It will also be seen how simplr an adaptation of this idea the headstock proved.

The cheeks were not laboriously pegged
on with square wooden pegs fashioned by weary hours of toil on a desert isle. The romance of building had paled a bit by the time the writer had the patterns whittled. and he used good old shingle nails to fasten them.

When it came to pouring the castings, home methods such as might be found on a desert island scored a technical victory over the "isolated environment." Assuming that if we had been cast away on some isle we would have somehow come into posseasion of a few old Ford pistons, or could have stolen them from the private carriage of the Cannibal King, and that a bank of clay was available, we would have come out nicely, for we put the rough patterns in a mold of soft, clay-like sand out behind the nearby garage, and using Mother Earth as the drag of our founder's flask, we whitted a three cornered cope tor the top half of the mold, which turned out to be very passable.

What would have happened then on a desert isle is a matter of conjecture. Ac* tually we made our own charcoal, and on the garage forge we melted the old Ford piston serap in a borrowed crucible, from which the castings were poured.

Machining Costs $\$ 1.80$
Romance, however, kept on fading out. After casting the molds, we went to a machine shop and got a machinist to cut off the bar-bed in the form of one-inch cold

rolled shafting, and we had hitn face the castings and bore them as shown in the drawings, with the set screw drillings and the oil holes as shown. The machinist's bill was \$1.80.

We found it advisable to get out the bar-

The several parts of the home-made lathe are shown here ready to be asembled.

saw stock bearing to be bored smooth $\frac{1}{2}$ in diometer, tail stock bored ${ }^{\frac{1}{4}}$ "and threaded stondard gos pipe thread Bottoms are identicol.

This Lathe is "JACK-OF-ALL-TRADES"

bed first, bore the large hole in the castings, and face them all off at once on the shaft. Then the feet of all three castings were in line and flush, and could be clamped while the bearinge and tail and saw stock heads were bored. Also it was found advis. able to mill a $1 / 4$-inch flat along
the bar-bed so that any chewing of the set screws would not affect the accuracy of the line-
angle plate up or the sliding of the as. sembly.
The live spindle and the tail spindle were simple enough. The pulley can be turned from almost any cast iron stock, and should have the grooves at 60 degrees, using for drive a common sewing machine belt from a $1 / 4$ h. p. motor. The wheel on the dead or tail spindle was taken from an old gate valve and riveted through the shaft.

Morse tapers, size -No. 1, were reamed into both the live and dead spindles, with holes in the proper place to give leverage on any center which might try to stay put at the wrong time. An old hex locknut was found which fit the tail stock, and in the new capacity locked the dead center just as effectively as the old style clamp. This can be seen from the illustrations.

Quarter Horse Motor Used

The tool rests vary greatly in conforming to different work so they were made up as the jobs came along. The saw table was simple, merely a piece of angle iron with a half-inch oak board clamped to it by countersunk flush headed stove bolts.

A tool rest can be made from a piece of old railroad rail. The feed will, of course, be through the head of the rail, which can be cut down so that only the web will, when bored, slide along the bar of the lathe.

With the addition of a steady rest for holding the tools the lathe, cast from box-lumber patterns, is ready for work.

Such a rest will be solid enough for any wood turning tool and with the addition of the rest which can be copied from an old lathe such as is found in any garage, one can rig an automatic screw feed fea. ture to this little lathe. In fact, there is nothing that cannot be made and fitted for it once you have mastered the art of making patterns and obtaining casting from your own design.

Dead Spinolle 1 wanted 4 gas pipe. Drill ream for Nal Morse toper.

A $1 / 4 \mathrm{~h}$. p. motor is used for power. The great majority of turning comes at a spindle speed of about 1,750 r. p. m.; consequently, there is no need for a counter wheel to slow the lathe down.
Should a counter wheel be needed, a speed ratio of two to one and three to one can be used. This means that the large wheel on the counter shaft, driven by the belt from the motor, shall be three times and two times, respectively, the size of the pulley which is driving the pulley on the headstock of the lathe.

Ordinary round lathe belting can be used for this driving and is cheaply procured at any sewing machine shop.

Alt screw cutting in the lathe is done with dies in a die stock. Power is furnished by a smooth, hand operated bull-wheel mounted in the place of the saw on the saw arbor. This will do the work as rapid. ly as is necessary.

One will find the lathe to be all he needs in the average model workshop where more wood. working is done than metal-working. The patterns for the lathe were made in an afternoon and by noon of the next day the machine was ready for use.

All the standard face plates, tool rests and pulleys are standard on No. 1 Morse tapered lathes. They can be used with the added advantage that comes from the adjustable bar-bed and swing.

There are an amazing number of accessories on the market that will fit this lathe and they may be purchased at a reasonable price. Face plates may be obtained for about \$2.00. Any variety of tool cutter will cost from $\$ 1.00$ to $\$ 3.00$.

Anyone can construct this lathe at a relatively low cost, and with it he will be able to create many objects of value doring his spare time.

Pioneers

"What good are all these long-distance air flights?" This is the question sometimes asked by practicalminded persons who can see nothing of value in the imagina-tion-stirring flights of past years. Yet these endurance flights are to the aeronautical engineer what the laboratory is to the scientist. The important part played by these pioneers of the air is explained in this article.

By WESTON FARMER

FIFTY years hence some aeronautic historian will comment on the extraordinary courage and imagination that spurred aviators of the early twentieth century to fly across the Atlantic Ocean in machines as quaint and primitive to him as are the pictures of Magellan's caravels to us.

Alcock and Brown, Lindbergh, Byrd, Chamberlin, Koeht, Fitzmaurice, von Huenefcld, Amelia Earhart-he will marvel at the temerity that made it possible for them to voyage over two thousand miles of water in machines never designed for ocean Aying.
And then he will come to the ships of his day, and point out the influences which epochal long distance flights of today had in the design of the ships which will then erable Americans to spend their week ends in Paris, when Berlin and London and Florida will be a Winter Aulantic City for New York, Chicago, and Boston.
We of this day and age will live to see this come to pass, and as we are living in the day which will forecast the aeronautical future of tomorrow, let us pause a bit to consider what these flights mean to aviation, and see what has been accomplished. The list of worthwhile flights is surprisingly long.
In 1919, the American Navy equipped
and sponsored the flight of the NC flying boats. The NC-4 under Commander Read mado a successful crossing on her own power, flying from Newfoundland to Plymouth, England, by way of the Azores and Portugal, with stops en route.
While the United States Navy expedition was under way, Lieutenants Alcock and Brown, two veteran Royal Air Force officers who had seen service at the front, flew a Vickers-Vimy twin-engined biplane to Ireland. They landed 1,960 miles from their point of departure, which was St. Johns, Newfoundland. This was heralded as the greatest feat of aviation, the greatest nonstop flight to that date, and it was a truly remarkable achievement. Considering the limited carrying ability of their plane as against that of present day monoplane designs with air instead of watercooled motors and their much improved design, the feat is an epic of the air-one of the outstanding flights of all time in popular imaginative appeal.

THEN, in 1923, an American hotel owner, Mr. Raymond Orteig, offered a standing reward of $\$ 25,000$ for a flight calculated to fire public imagination. This flight was to be a hop from New York to Paris.
New York to Paris! The man in the

SKY!

Distance, always the most formidable barrier between the races of mankind, is fighting a losing battle against the airplane. international spreader of good-will. Even the most far-lying jungles of the world, are accessible to Magellans

street could grasp that distance-it was familiar to him. So many days of travel by ship, so many hours ity train. The distance from Trepassey to Land's End might have been but a day's ride by boat, for all the average men knew. But New York to Paris! That was a flight!

So it was that in 1926 several expeditions were organized. Rene Fonck was chosen to
pilot a huge ship built especially for the jump. This cracked up in taking off, and hurned the crew. One after the other, the aspirants qualifying for the classic of thr air met with disaster. Because of repeated misfortunes, the ohstacles were vividly impressed upon the public mind. The challenge that the difficulties flung in the way of hirdmen called to the front one of the

Navy's crack fiers, Richard Evelyn Byrd, who was the man chosen by Rodman Wanamaker, long an enthusiast of the project, to pilot a plane he had sponsored. Expedition after expedition was being lined up, and the spring of 1927 saw many ships awaiting fair weather for a takeoff.
Two French fliers, Nungesser (the greatest of all war aces) and a partner, Coli, took off from France in a westerly direction in an effort to beat Byrd and the BellancaLevine syndicate. They were never heard from again. In the public mind the hazards of the flight were magnified by their loss.
Still, Byrd carried on preperations. Quarrelling and delay developed in the other camp. The world was watching.

The Airplane of the Future?

This airplane of unusual design will practically fy itself -and that, according to designers, is eractly what may be expected of tomorrow's airplanes. Foremost airplane enGineers ases in the prediction that the airplane of the future will not require a skilled pilot-anybody will be able to step into his airplane, decide on his destunation by pushing a button, and sit back reading the morning paper until the machine has automatically made the landing and come to a stop.

All of the atability of the plane shown above in inherent in the wings; the tail is used only to steer the craft. The winge can be staggered by means of a wheel control within the coclpit, and once they have been set at the desired angle the airplane rises without the need of a hand at the controls, except for steering.

THEN from out a clear aky, a twenty-five year-old back-country lad named Lindbergh electrified the country by crossing the United States in two jumps. In San Diego one day, then St. "ouis, on to New York the next he flew, while the press and the nation were focussing attention on the well organized and complex syndicates which were making preparations for the great adventure. Immediately attention was centered upon this unknown lad who dared to undertake, single-handed, a venture which had thwarted the best known aviation experts of alt the world, and had claimed many lives.

While others waited and watched for their "break" in the rainy weather, this ex-barnstorming lad stepped to his plane one morning and quietly said, "I guess I'll go."

He was off! And thirty. three hours later the dramatic saga of Lindbergh was complete!

What followed is household knowledge. Since then, because of the popularity showered upon trans-Atlantic aspirants, one after another has endeavored to meet the mark set by The Spirit of St. Louris.

Why all these flights? What do they accomplish?

The aeronautic historian of tomorrow will point to the great work and development done by all these pioneers. They have risked all in the cause which will one day gather, through their efforts, enough knowledge of conditions out over the ocean, to enable the designers of tomorrow to build ships which will fulfill the prophecy made earlierknowledge which will one day bring Berlin and London and Florida as close to each other as New York and Atlantic City are now.

Tank on Wheels for Garbage Collection

CLOSED tanks mounted on heavy trucks are taking the place of open wagons in collecting garbage in German cities. The picture shows a collection tank designed for use in the city of Braunschweig. Outwardly the tank has the appearance of a large boiler. It is divided into four compartments, each with a separate porthole. The tank rolls over on its side at the will of the driver, running on rollers set along the side of the truck frame. Besides speeding up garbage collection, the new tank eliminates all objectionable odors.

BRITISH INVENTORS ON THE JOB

Fears of pessimists that everything has been invented and that there is nothing left for the ambitious experimenter to contrive are not borne out by the 1927 report of the British Controller-general of Patents. A record was set when 35,469 applications for patents were received.

DEAF HEAR THROUGH HANDS

A modified form of telephone receiver which the patient holds in his hand has been devised for the use of the totally deaf. Speech vibrations are transmitted through the receiver to the skin. After a little practice well known phrasps and words are easily recognized throuph the difference in feel of the vibrations transmitted.

Novel Motorboat

Driven by an outboard motor installed through a well in the hull amidships, this small motorboat will do thirty miles per hour. Any outboard motor of the larger sizes may be used for power.

The boat is thirteen feet long and four
and a half feet wide, eighteen inches deep, and weighs two hundred pounds without the motor. All controls are mountec. dashboard, and steering is by the con tional motorboat type steering wheel instead of by the usual long tiller.

Instead of being attached to the stern in the conventional manner, the outboard motor which propels this boat is installed through a well in the hull.

Housewives Cheated by Shortweight Measures

ANEW YORK grocer with a mechanical bent recently figured out a method of doctoring his scales to give his customers short measure on their purchases. The

scales were mounted on a wooden box, cs shown in the picture, and weighted from the bottom witl padlocks, bolts, and other heavy objects. Another example of short
measure is shown in the "bushel" basket, cut away to show the false bottom and sides which cheated purchasers out of one quar. ter of the amount paid for. Government inspectors confiscated these short weight measures and their owners paid heavy fines. A Federal law specifies the sizes of bulk measures, and merchants violating the regulations are harshly dealt with.

Two reasons why a peck of potatose doemn't furnish as many meala as the housewife expects, are shown above. The cheating measures were confiscated by government inspectora.

DEAD MAN MEETS WITH COLLEGE BOARD

One of the most unusual wills on record was that of Jeremy Bentham, a wealthy

The mummified figure of Jeremy Bentham, dead for a hundred years proides at stall mestings of a college he endowed.

Englishman of the eighteenth century who bequeathed a large sum to University College, London, on condition that his body bepreserved and brought out to occupy a place: of honor at the meetings of the collegrsiaff. His mummified skin was accordingly preserved, stuffed, and clothed with a mask. It is seated in a sedan chair which is carried to the meetings in accordance with the strange request of a man dead for more than a liundred yars.

CHEMISTS RECLAIM ASBESTOS ORE

The original owner of great asbestos mines in Canada refused to believe that the refuse left after he had extracted the long mineral fibers from the ore was of any value. He regarded as useless the enormous dumps of "cotton stone" or rock in which short, silky fibers was still imbedded.

When his business failed and the mines passed into new hands, his successor consulted with chemists and developed a method of crushing the rock to utilize all the ore.

Conducted by MRS. C. M. SULLIVAN

Abstract

In line with Modern Mechanics Magazine's policy of having ail departments conducted by experts, Mrs. C. M. Sullivan has been appointed editor of this department. For several years Mrs. Sullivan has been in charge of the Houschold Service division of a harge New York department store, where her duties require her to pass upon the merits of innumerable devices brought out to lighten the labors of the housewife.

Repainting Antiques

BEFORE the new pyroxylin finishes sold under such trade names as "Duco," "Valspar," etc., can be applied to painted or varnished surfaces, the old protecting paint must be roboved. The quick drying proxylin paints art as paint removers when racd on lead painted surfaces or on varnished surfaces, and unless the original fintsh is removed, any attempt to apply mow inlor will result in a bery mesay curdled -rfarm.

To remove varnish or paint, a mixture of alcohol and turpentine should be warmed in a bottle by immersing in hot water, and then applied hot. The remover should be dabied on with a cotton swab. left to soak through, and then with a dry cloth the finish can be wiped off.

This mixture has the advantare that it can he applied time after time until the wood grain is at the surface and all the old finish is gone. The quick drving finishes then can the applied and a good finish is assured.

Simple Jar Opener

Made from an old trunk strap and a leort length of broom handle, this adjust-

whle wrench comes in for much use in the f, ll fruit season. Any strip of soft leather
about a foot in Iengith is suitable for use. One end is punched with three or four small t:oles fitting over a serew head to allow of adjustment. The other end of the strap is tacked to the wooden lundle as diagrammed. With this drvice hot Mason jars can he sealed tightly with the assurance that the wrench will quickly remove the gasketed tops without resort to the usual methods of immersion in boiling water. The soft leather grips the metal tops securely.

Handy DUST CHUTE Saves Work

0VE of the noticeable things about the new homes which architects are designing to meet with modern conditions of living is the increased use of all kinds flabor saving devices. Homes are electrified and fitted with appliances unthought of ten vears ago. A recent survey of the amount of time spent in tasks classed under the heading "Houschold Drudqery" reveals that the modern housewife accomplishes in forty minutes that which took her mother one hundred and twenty minutes. This is all in line with the American ereed of effiriency which gives more lrisure as a reward for speedier methods of accomplishing work.

One successful small house designer has incorporated a built-in appliance which saves a great dral of time in the disposing of household dust and sweepings. A chute is built in the house at the time it is erected, into which a special aluminum casting is hinged so as to exclude drafts at the floors. This cover is matehed in section with the moldboard, hinging up as the dirt gathered is swept down the chute which leads to a sack in the basement.

Such a disposal system is in reality a countrrpart of the laundry rhute idea.

BREAD FROM SKIM MILK POWDER

The Department of Agriculture has perfected an improved method of drying milk into powder. The dried akim milk is particularly suitable for use in making bread, and is said to greatly improve the nutritive value. Ten pounds of milt left over from butter making is said to make nearly a pound of powder, and it is said that the available supply of skim milk is far greater than is now being used for making powder.

The powder contains 38% of proteins, 50% of lactose or milk sugar, and 8% of valuable salts. Thus the dried milk, used with good flour, increases the food value of liread. It is said that the powder enables the baker to obtain a loaf of 10% larger and about four per cent heavier, of better flavor and more nutritive. The added cost of the powder is balanced by the greater number of loaves per barrel of flour.

MILK BOTTLE BREAKAGE

The Burean of Dairy Industry recently surveyed ten large milk plants in the Middle West. It was found that the average is 12.77 pounds of broken glass per 1,000 bottles filled. The losses are itemized as follows:
Route breaking and dumping
2.49 lbs per 1,000

Handling to washing
machines 3.01
Breakage in washer.......... 3.47
Breakage at fillers 2.92
Milk storage room and
checking out
Total 12.77

Toys from Discarded Lamp Bulbs

Solving the problem of what to do with old bulbs!

$\$ 97$ Movie \mathcal{C} (ade in Hollywood Kitchen

By A. L. WOOLDRIDGE
Special Hollywood Correspondent

Abstract

Stories of millions of dollars spent in producing ten-reel movie features have given the public an idea that only a big company could produce profit-making motion pictures. But Robert Florey, expending $\$ 97$ produced a picture which is making him wealthy!

IF YOU have $\$ 100$ or so, plus a few old cigar boxes, a motion picture camera, and a desire to break into the movies-as who hasn't? -you can be your own director and cameraman and produce a motion picture worthy of exhibition in theaters throughout the country. That is, you can it you are as skillful and economical as Robert Florey, who cut his sets from cardboard and cigar boxes and produced in a Hollywood kitchen, at a total cost of 397, a movie which is being shown in United Artists theaters ald over America.

Futuristic creations, Floreycalls them. "Creations of a genius!" say old studio heads.

Florey, who has been about everything in pictures from wardrobe designer to assistant director and "gag man," has exploded the theory that a "movie" must be made in a million-dollar studio beneath the glare of the Kleigs, while soft music is playing. Rather, he has demonstrated that a marketable production may be filmed most anywhere-in a kitchen where the music of pots and pans is played, or out in the street where tram cars and traffic take roles.

Robert Florey, Foung Hollywood director, produced a complete motion picture with this camera at a cost of 897.

Hollywood was astonished a few years ago when Josef von Sternberg made "Salvation Hunters" in a studio on Poverty Row at a cost of $\$ 4,500$. Critics didn't think much of "Salvation Hunters," but it was extensively shown and made money. Robert Florey's pictures now make von Sternberg's $\$ 4,500$ accomplishment look like nabob extravagance, as neither he nor his associates could afford any such reckless expenditure of money. One hundred "bucks" had to be the limit on the first production because one hundred "bucks" was about all the money he had. Even now, while their offerings are going good, that sum isn't greatly exceeded.
"We didn't have any treasury, any stockholders, any props, any anything except our weekly pay-checks," said Florey at the side of his camera when I called the other day. "And," he added, "some of us didn't even have pay-checks. I had the idea for my first picture and one night in a restaurant I met Slav Vorkapich, the Serbian painter, to whom 1 confided my plans,
"'Let's buy the short ends of films at the studio,' I suggested, 'and make a picture. Short ends will cost us about 1 cent a foot. New film in rolls costs about 3 cents. I'll cut out sets in miniature-make them from rardboard that comes back with my laundered shirts, and from boxes. Then you paint 'em. When we need big scenes, we'll grab 'em on the streets." "

The idea hit. Florey and Vorkapich pooled their possessions and went to work. They found they would have to invest fully 83 at a 5 -and-10-cent store for three toy trains, four toy automobiles and a boy's mechanical building set. Then there would bave to be string, mucilage, a paper of pins and a few other small items.
In Vorkapich's kitchen one night, Florey cut "buildings" with scissors and knife while his companion painted doors, windows, fire escapes and chimneys upon them. It took days to complete the task. Then the "producer" went out in search of actors temporarily out of employment, or rather, "between pictures," as they term it.

They found Jules Raucort, a Belgian, who years ago was leading man for Pauline Frederick and later the star of sevaral Maurice Tourneur productions. They stumbled upon Voya George, a Serbian whom Vorkapich knew. Both agreed to lend their talents, not for immediate rompensation but for "part of the benefits" which might accrue. Adrian March, an "extra" girl, was induced to play the heroine of the picture for similar remuneration. In addition to these, the producers took roles themselves. Gretg Toland, cameraman for Samuel Goldwyn, agreed to photograph the production.
"Twenty scenes an hour," directed Florey. "This is going to be a great picture. One hundred and fifty scenes. Let's go."

"Crazy" Story Makes Hit

Their story, "The Life and Death of a Hallywood Extra," was based on the expreriences of an actor seeking employment. On every hand he encountered the sign, "No Casting Today." He moved about in a daze, tired, hungry, revolving in his mind, "Vo Casting Today! No Casting Today!" A producer valuing him as only one of the thousands of "extras" brands him on the forehead with the number 9,413. He begins

Episodes from the hectic existence of a Hollywood extra are fantastically pictured in Florey's movie. Above are several "shots" of the film, illustrating the futuristic treatment of the story.

Ten-cent toy: and cardboard buildings stacked up along the kitchen wall were the only sets used in filming the 997 production "The Life and Death of a Hollywood Extra."
going "blah-blah" and moving his lips like a dummy. The world goes dizzy, buildings whirl round and round, street cars shoot toward heaven. From unexpected places pop out traffic signals "STOP" and "GO." The goofy extra tries to comply with the confusing directions.
He meets a star who "high-hats" him, but finds that the star, too, is going crazy. Then the little heroine becomes demented. Finally , in utter exhaustion and thoroughly disgusted with life, the poor "extra" lies down to die. His spirit leaves its earthly body and turns to look at what has been carrying it around.
Then the extra awakens.
"Crazy!" one exclaims on seeing it.
"Impressionistic!" corrects Florey in mock hauteur.
Just the same, persons laugh uproariously at the exotic, distorted, "looney tale." Virtually every trick of the motion picture camera is incorporated in its making. There are cut-backs, fade-ins, fade-outs, lap dis-
solves, scenes shown upside down and other. revolving.

At a private showing in the home of Charlie Chaplin, there were present Joseph Schenck, Doug and Mary, Camilla Horn, Harry d'Arrast and a few other motion picture people. As the impressionistic creation began to unreel, the audience snickered. Then it guffawed. Presently, in a dignified way, it howled.
"That's good enough for our theaters," exclaimed Mr. Schenck. "I think we could use a half dozen more."

Players Share in Melon

The total expenditure on the production wes classified, according to Florey's books, as follows:

$$
\begin{aligned}
& \text { Negative } \$ 25.00 \\
& \text { 5-and-10-cent Store Props....... } \quad 3.00 \\
& \text { Developing and printing....... } 55.00 \\
& \text { Transportation, odds and ends. } \\
& \hline 14.00
\end{aligned}
$$

IN LINE with a policy requiring that emphasis be placed on the most modern of mechanical subjects, it is fitting that this department in Modern Mechanics feature the latest and most important development in camera craft-amateur motion pictures. Experimenters in this field will find here an ever widening fund of information and helpful suggestions. In this issue the subject of amateur movie making is discussed in an introductory fashion, of chief interest to the beginner.

Getting a Start in Amateur Movies

FLR from being a rith man's pastime, the making of amatern mution picturehus now reathed such a paint of eemeral |"יpularity that the spont haw its own cland masames. and dorins of manufarmers ate competing for pilltrinave in a race with funcoations, nowethes and wiking imstasements.
But the frot plestion and doy the peran -mpmoplating laking up thin new sport 1. - How much."

A complete mafit of mation pirture
 Hew as $\mathbf{8 3}$, in the nene millimetor field. and from around $\$ 1.0$ and uf in the sivern mil.
 W-ualized when it is remmonerd that regulation motion piolure film. as thed in thaters. is 3.5 millimeters, or one ami threrefighths inches, in width. The smalleses ina is most popular abruad. while in this country the 16 mm . width lrads in demand.

A financing plan has leern worked out lis many amateurs which offers an exerel. l.ent pratical solution to the cost problem.

First a aroul of intereated popio win th. gether and cumanter thix proporal:
"Why nut poul netr caneraz money and
 propert

 ver small.
 individual- "are 10 ane ther monir cammat

 wather ronation." leating the butfit in turn with "ach member of the , luthe Surerial
 partiocs which fall on athary tatro. ran lue spoken for and arramerment- made with the chul diretor to obdain the ramera :a' the desired date.
In praction, these clubs are found to work without friction, with many mexpected advantages. Some memberrs of the clules prow particularly eflicirnt in shooting scences. and lend their talents to less successful

This harness arrangement enables the motion picture camera to follow all the motions of a dancing couple. The camera is placed on casters and is swung about by the motions of the dancers. Lloyd Hughes and Mary Astor are shown in the machine.
members when a certain scene is wanted filmed. Expensive equipment such as full color attachments, telephoto lenses, and so on, can be obtained by the club where they would be out of reach of the average camera owner. Intelligently conducted, the amateur movie club can be a highly successful affair. As time goes on, club members may acquire cameras and outfits of their own, and sell their rights in the community outfi, though retaining membership. Perhaps some members will buy only a camera, using the club projector for their shows. Members of the same family may work the club idea to advantage, also. In some cases a camera owner finds that he can rent his outfit to others and cut down the cost of his purchase.

HOME MOVIES IN COLORS REALIZED BY INVENTION

0NE of the most important developments in amateur motion pictures is the recent perfection of the Eastman "Kodacolor," placing colored movies in the reach of the home movie maker.

Attachments have been manufactured for their Cine-Kodak and projector consisting of a color filter which does not inter-
fere with the making of regular black and white motion pictures.
An ingenious system of embossing the back of the base of the film with tiny cylindrical lenses brought about the achievement. These lenses, in combination with the Kodacolor filter and the special panchromatic emulsion that coats the film, result in a full color film that brings to the home acreen all the natural colors in full brilliancy, without requiring the actual coloring of the film itself.

Only black and white duplicate films can be made at the present time, and as yet the Eastman plant at Rochester is the only station operating for Kodacolor. The CineKodak, model B with f. I. 9 lens is already adapted for color filming, but other models of their cameras and projectors require some alterations before using the new color process.

KEYHOLE MATTES PROVIDE COMEDY TOUCH FOR AMATEUR

ANOVEL effect often used by professional camera men has been placed within reach of the amateur by Bell and Howell, who have put on the market a
series of vignetting mattes to fit their Filmo camera.

These mattes are made in the shapes of hearts, keyholes, triangles and binoculars. Much fun can be had by slipping the keyhole vignette over the lens to put a comedy touch on a kissing scene. For horse races the binocular matte adds a note of realism to the amateur's reel. A vision matte can also be obtained for taking double exposures where the camera man wants to ghow his subject having a dream, and similar effects. Duplicate mattes fit over the finders.

An iris vignetter for Filmos enables the amateur to get the much desired "circle-in" and "circle-out" effects. Bell and Howell make this vignetter for use with one inch f. 3. 5. lens in either fixed or focusing mount.

HOME MADE REFLECTORS

Showing how reflectors are used in the movies

AHOLD-OVER from still camera habits is the idea most amateur movie makers have that the sun should be behind the cameraman.

In making movies the opposite is trueshooting is done toward the sun, only with care being taken to shield the lens from the direct rays.

This position does away with the harsh lights and shadows on the subject's face, provides pretty effects in the hair because of backlighting, and prevents the operator's shadow from showing in the foreground.

But reflectors are an important adjunct in shooting against the sun, and full use of
them should be made. By holding a reflector on the shadow side of the subject, or in front, a diffused light is obtained that brings out the features. A sheet of white cardboard tacked on a frame provides a fairly durable reflector. If nothing else, use a sheet thrown over a chair, or hold up a large mirror to reflect the light at a proper angle.

SMALL BOTTLE HOLDER FOR THE AMATEUR'S DARK ROOM

When using small bottles of acid or other fluids in the dark room, a very handy and clever holder can be made for them as shown in the photo. Bend an ordinary smoking-pipe cleaner strip evenly over the bottle and make one snug twist. Fasten the ends of the cleaner strip under two small thumb tacks. This is a handy little scheme around the bench when using acids taken drop by drop from the bottle with a swab or small glass dropper. There is no danger of upsetting the bottle.

PATHEX INCREASES LIBRARY FOR HOME FILM SHOWS

Pathex, manufacturers of 9 millimeter outfits, has issued a new list of exhibition films which can be shown on their home projectors. The list includes such film notables as Will Rogers, Harold Lloyd, Doug Fairbanks, and Lillian Gish. Current lists of their releases for amateur movie makers can be obtained from them hy writing Pathex, 35 West 45 th street, New York.

Giant Air Liner Has Novel Features

The interior of thia new biplane accommodates 18 pasengers and presents much the same appearance ae luxurious railway conch. The "bug eyes" in the streamline nose of the plane. shown above, are adjuatable searchlights. Note the engine radiators incorporated in the etruta anchoring the upper wing to the fuselage.

SEVERAL new features of airplane design are incorporated in the huge de luxe passenger plane recently completed at the Farman Works in Paris. The ship is powered by t win engines under the upper wing. Instead of the usual two-bladed propeller, the four-bladed type is used. This makes it possible to reduce the diameter of the blade, which permits the engine to be mounted over the cabin, yet close enough
to the fuselage so that efficiency is not sacrificed.

To cut down wind resistance, the nose is streamlined and the landing gear built close to the lower wing. Radiators built into the wing struts further minimize resistance. Twin searchlights, resembling human eyeballs in appearance, furnish illumination for night landings. The pilot's cabin is entircly separate from that of the passengers.

Birds Show Way to Airplane Efficiency

BIRDS still hold all records for efficiency in flying, if not for speed. The average small bird does not travel faster than 25 miles an hour, while 200 miles is easily attained by airplane. But an enormous amount of energy is required to propel a plane at this speed. Birds travel almost effortlessly, floating to a large extent on unseen currents of the upper air.

A puzzling fact observed by scientists is
that the larger birds have smaller wings, in proportion to their size, than their leaser brothers. The wings of insects are still larger in proportion to body size. A small bird can fly to his perch at full speed, but the eagle must flutter his wings and "put on the brakes" before he can alight.

It was through watching the action of birds in Alight that the Wright brothers de. veloped the first airplane.

TractorOut-pullsElephant in Tug-of-War

SEVENTY-TWO hundred pounds of elephant came in second best in a tug-ofwar recently conducled between Ruth, a 30 -year-old elephant, and a small tractor. Four legs proved to have less "pulling
power" than the caterpillar treads of the tractor. The elephant is shown bracing herself just as the irresistible pull of the tractor began to carry her backward.

MEASURING GLASS EXPANSION

ALMOST all materials expand with heat and contract with cold. But glass expands so slightly that it has been almost impossible heretofore to measure it. In the making of glazed dishes it is very important to know how much the glazing will expand, because if it exceeds the expansion of the clay body underneath, "crazing" will result. The fine cracks all over the surface spoil fine pottery.

Recently the Bureau of Standards devised a new method of measuring the expansion of glass to a very fine degree. Pieces of glazing only seven one-thousandths of an inch were measured, about three times the diameter of a hair. By using light waves as measuring beams, the expansion of as little as one two-hundred-thousandth of an inch was recorded. This is equivalent to a human hair expanding one four-hundredth of its diameter.

HE'LL GET THERE SHORTLY

THE "condensed" automobile shown below looks as if it had accidentally wandered into atamping press and come out with the short edge of the argument, It was built for cross-country touring by Felix Vervoort of Trinidad, Colo. There is just enough room for the owner and his dog, and when garage accommodations are crowded, the machine is almost small enough to park in a bathtub.

Old Ford parts were used in the construction of this abbreviated automobile.

How to Pick the Right Spark Plug for Your Car

Do you know why your automobile must use a particular type of spark plug to operate efficiently? This article tells you why your motor must use spark plugs adapted for its special use.

SPARK plugs are adopted for automobiles by the car manufacturers after extensive tests. While it is quite true that there are other plugs which will perform nicely in place of those furnished with the car, the standard equipment is not a bad choice for replacement. If plugs are to be purchased for the car it is well to have in mind certain definite peints of information.

The type of plug is easily determined. They are separable in that they may be taken apart for cleaning, or they are nonseparable and may not be taken apart.

In the illustration presented herewith the separable plugs and parts are shown at A , B, C, D, and the non-separable plugs are shown at E, F, and G.

Thread sizes and forms determine the size of the plug. The Ford is the one halfinch plug having the threaded portion the same size and form as the half-inch pipe thread. It is tapered thread and binds tighter as it is screwed into the cylinder head, thus forming the seal. The complete plug appears at A. At B the porcelain with the packing gaskets appears while at D the gaskels have been removed. The packing nut appears at the top of C while the lower view at C is of the spark plug body. The threaded portion is called the barrel. A plug may have a long body, (part above the ihreaded portion) or long barrel (the part below the hexagona! body).

The plugs appearing at \mathbf{E} and F are of the popular S. A. E.-18 size. At G the metric plug is shown. This plug is popular with the manufacturer of the small cylinder engine because of the fact that it requires less room. Plugs of the form of those shown at E, F, and G are sealed to the cylinder head by means of a compression gasket, one of which appears on \mathbf{E}.

The atyle of the plug as intimated above has to do with the body form and the barrel form. If the engine has a spark plug pocket recessed in it the body will need be of a certain size and length or no wrench

can be found which will place or remove the plug. If the cylinder head is such as to call for a long barrel the short barrel will not perform satisfactorily.

When ordering plugs first have in mind the type, separable or non-separable. Next have in mind the thread, as they are not interchangeable. They must be either halfinch, seveneeighth inch, or metric. Finally they are of the standard form, long body or long barrel.

WORN BEARINGS REBUILT

Machinery parts so badly worn as to be useless for further service can be reclaimed by building up the worn areas with a thickness of nickel electro-deposited on the original surface, using a special process de. veloped by an English engineering firm.

The tough, ductile nickel deposit interlocks with the metal to which it is applied so that it becomes a part of the piece, and cannot be stripped off as in ordinary nickel deposition. By applying the special process to a worn bearing, the surface can be built up and machined off to any desired dimensions.

Conducted by RAY F. KUNS
Mr. Kuns is a well-known autherity on automobile mechanics, being director of the Automotive Trade School of Cincinnati, Ohio. In this department of Modern Mechanics magazine Mr. Kuns will give monthly hints to the car owner on how to keep his automobile in the best of condition at minimum cost. and will point out how to avoid the commonest sources of unnecessary car expense.

"What Is That Bump I Hear?"

WFLLL, it may be any one of a number of things. Most often it is a piece of foreign material wedged between the tepth of the ring gear or the pinion gear, usuali, the ring. A case of this is shown in the picture reproduced herewith. This little piece of steel shown at A has been polished bright by the teeth of the pinion gear as they have been riding over it. Every time

A piece broken from the pinion tooth is wedged between the ring gear teeth at A, causing noise.
one of them hit it, a bump was telegraphed to the transmission of the rar and from there it is a short distance indeed to the ear of the driver. Sometimes the knock or bump is telegraphed to the front end of the car until the driver is willing to declare under oath that the noise comes from a connecting rod or lonse bearing.

If there is any question as to the source of the noise it can easily be determined. See whether it occurs when the engine is idling and the car standing, or when the car is coasting with the engine dead and the car out of gear. If it ocrurs in the latter case it can not be in the engine or trangmission.

The remedy of course is plain-a new set of gears must be installed in the rear axle. It is best to install both ring and pinion. If one is damaged they are both certain to be strained. Many companies will not soll one without the other. They are run in together in the "quiet room" of the factory and are known to be right before they come to you. Use the utmost care in handling and installing them.

How Rust Destroys Cars Exposed to Weather

Piston A is in perfect condition. Piston B is rusted from standing with water in the crlinder.

EVERY season literally thousands of cars are thrown on the market which have been standing for months and months without use. Not so long ago cars were hetter cared for then they are at present. With the tremendous number of cheap cars availsble, it stands to reason that there are many of them sadly neglected. This would not be so bad if they were junked, as they should be. However, when the demand comes for used cars, many "junkers" are hauled out and "dolled up" and sold.
The two pistons shown in the picture
tell the whole story. The piston marked A is in the condition that a piston should be, in order to give service. The one marked B was taken from an engine which had stood for a year without any care whatever. The piston is badly rusted and corroded. The top ring has heen removed, but the second ring is rusted tightly into the piston.
Imagine the task of pulting this engine in condition for real service. Money invested in a car of this tiond is only so much money thrown away.

Ford Transmission Wrench

AWRENCH designed for use in removing and replacing Ford transmission bands has been perfected by Her. bert Petterson, of McGregor, lowa. The diagram illustrates its construction. The wrench is turned by the hand without the necessity of reaching

into the transmission. It will remove the lock nut and washer on the reverse and brake pedals and eliminates all danger of dropping them into the transmission housing, entailing several hours of labor in recovering them. If desired, the shaft can be disengaged and the socket tumed by hand. The wrench is provided with an opening in the center of the socket to permit the pedal adjusting shaft to pass through.

How Overheating Ruins Your Motor

H^{2}OW often have motorists heard this remark or a similar one, "You ought to have seen her boil coming up the hill, but then, she is used to it and it won't hurt her," Such remarks as these only go to prove the old statement that "ignorance is bliss." The piston and top ring shown in the accompanying picture give ample proof of this. It will be noted that the ring at point A has been very badly warped by the excess heat. Once it was out of the groove, it was impossible to get it back. The scoring at points B B, resulting in loss of power, also show the fallacy of the theory that there is no harm in a little overheating.

Cylinder walls are also damaged by overheating, and when walls and pistons are badly scored the only satisfactory remedy is to have the cylinders rebored and new pistons installed. An overheated engine is likely to require costly repairs.

BATTERY TERMINAL PULLER

CORRODED battery terminals are hard to pull when, as often happens, the clamp bolt nut is corroded too and refuses to answer to the wrench. Any welder or garage man can make the puller shown here in a few minutes. The base is a piece of spring tip ground to the form desired. The upright is made from a piece of $1 / 2^{*}$ cold rolled steel. This is welded to the base and then a brace of $1 / 4^{\prime \prime}$ material is set in and welded. The hand screw which is made from a bolt and a piece of $1 / 8{ }^{*}$ iron is run through a nut welded to the bent over end of the post. The puller bhown has been used to pull some of the hard ones, even without loosening the badly corroded clamp bolt.

Overheating has ruined this piston. Note warping of ring at A and scoring of piston at B B.

BATTERY REJUVENATOR

Dry cells may be made to function when they are worn out by placing them in an oven for a few minutes. The added warmth stimulates chemical activity and will enable the user to get a few more hours of service. This is valuable when, as for instance on a holiday, no new batteries can be purchased.

If a hot knife is forced through the tar on top of the batteries, and vinegar poured into the opening, the acid in the vinegar will also give a new lease of life to the cell.

ANTI-KNOCK ACTION EXPLAINED

If you have been running your automobile with gasoline treated with tetra-ethyl lead, you will be interested in the latest theories of acientists explaining the action of this compound in taking the knock out of your engine. The less voltatile elements of the gasoline are thought to break up into minute liquid droplets when the charge is drawn into the cylinder. The tetra-ethyl lead is decomposed by the heat of the combustion chamber and the lead particles become concentrated on the droplets, which are thus prevented from exploding too soon.

Observation Body for Motor Car

Passengers can watch the scenery through the rear door of this observation motor car.

IS THE motor car passing through a cycle of body design which will eventually restore to popularity the old time type of coach in which passengers entered the tonneau from the rear of the car?

An observation sedan body has been designed for American manufacture which has a reversible rear seat that permits passengers to face either forward or backward when riding. Entrance is gained through a door that opens just over the gas tank Class panels on all sides afford a clear view from every angle.

From the front the car presents the appearance of a conventional sedan. The body can be adapted to any chassis.

CLOCKLESS REVOLUTION INDICATOR

ANEW revolution indicator which gives absolutely accurate results without the usc of a separate timing device has been put on the market by an American jobher. The mechanism within the instrument is timed to run three secondsno longer. By simple mental division and multiplication the revolutions per minute are easily arrived at.

The secret of this mechanism lies in the use of a fine screw connected to a centrifugal gove:ning wheel. When the thread is rum
 out the instrument ceases to read. It is a great help to mechanics.

MILLIONS CHARGED TO AUTOMOBILES

That the total cost of automobiles is not represented by purchase price and upkeep expense is shown by a recent government report which lists the number of auto injuries in the United States in 1926 as 700,000 , entailing an economic loss by deaths and injuries of $\mathbf{\$ 6 3 8 , 0 0 0 . 0 0 0}$.

MOTOR WHEEL FOR CHEAP TRANSPORTATION

POWERED by a motorcycle engine and operated through the conventional handlebar control, a rubber-tired motor wheel has been invented which is claimed to represent the ideal in cheap and rapid transportation. The device is so simple that a youngster can operate it. The large wheel is fitted with a continuous inner track along which run a series of flanged wheels on which the mechanism revolves. The rider is seated inside the wheel on a regulation

Thif mew motor whet je powered by a motor-

PATENTS wirrs?

Here are patents granted for machines which it is hoped will advance the sum total of human welfare. They perform a variety of functions, from pulling the feathers off a chicken to murdering flies with electricity.

CLOCK OR FRYING-PAN?

Hert is an ingenious collection of kitchen utensils arranged in the form of a clock designed to be hung in the livitheroomg of courmands to remind them of the ppproech of the dinner hour. It ought to Fork if the dish doean't tale a motion to tur maray with the mpoon.

SQUAW-W-WK!
What chance has a little red hen in this thing? Designed to whisk the feathers off, this machine has a big wheel with teeth in it, and in the exact words of the patent specification, "a non-rotating member adjacent to the said body designed to co-operate with said body" and pluck out the feathers therefrom. This warlike engine would make any chicken blush. Imagine the embarrassment of a hen upon emerging from a treatment!

WHAT WILL A WATT KILL?

This is an electricel device for entertaining fies and eiving them the thrill of a jifetithe. For instance, suppone a few of the buzry fribe are discovered in this trap by a housefly as mails around a corner of the machine in retreat from his latest raid. Other flies, previously blown into the trap by an electric fan, inveigle him into entering their midst. An the fly warily walk toward hia follow recketeers, he rounds "death corner." An automatic device gives him the "worlg" and he dics lite a dog, frosen etiff with kilowatts. Thus vengetance is done!

MAKING THE BIRDS JEALOUS

The inventor of this airplane has put Icarus. the first bird-man, to hame, Hert we have plane deaigned Efter the line of bird. Imagine the predicament of the avistor when his plant searts hedding fasthers in the moulting seagon?

Penniless INVENTOR Gets

Anatol Josepho is shown bbove with his million dollar photo machime, which delivers 8 picture in 8 minutes, all for 25 cents.

By ORVILLE H. KNEEN

BEGINNING in 1888 with the first crude gum-dispenser, hundreds of different steel-encased, gear-spring, lever-plus salesmen have been invented, down to the latest 164
which pleasantly says "thank you" as it digests your nickel. But until a few short months ago the very idea of automatic portraiture seemed absurd. Certainly anyone

Orillion for Photo Machine

Ten years ago a penniless prisoner of the Bolsheviks; today an American millionaire! This fascinating story tells how a young Russian inventor persevered through years of discouragement and finally perfected a machine for taking automatic photos which he sold for a million dollars.

Camiliar with the complicated and highly technical process of adjusting the light, posing a trembling sitter, waiting for an elusive smile or appearance of sanity, developing and fixing plate or film, and finally making recognizable prints, would be the last to turn the job over to machinery,
Whether the admitted complication discouraged inventors, or w^{b}, her their ingenuity was baffled, it is a fact that until a certain Russian immigrant landed in New York, short on dollars but long on ideas, the hands that waved the little birdie and pressed the bulb still pictured the nation's beauty and chivalry.
The inventor of the Photomaton, Anatol Josepho, could do that, too, but for fourteen years of war-huffeting and wandering. he had firmly believed that machinery could do it better.

As we see it now, the important thing was that Josepho knew photography first, and morhanics second. It is a great deal easier to generate ideas than to make them work, or to know beyond question that they are worth the trouble of making them work. When Josepho told his own tale of those long years when life itself was a daily qanible, I felt that his story could not fail to inspire every discouraged inventor,

No Films Used in Photomaton

Perhaps the most interesting part of the indomitable little Russian's machine is his method of direct photography on the paper. Much of the complication of photography comes from the use of glass plates or film. Josepho uses specially sensilized paper. Two inches of this are exposed at each snap of the

This shows the type of picture taken by the Photomaton, with Presidential Candidate A! Stnith as the sitter, Eight photos for 25 centa!

Henry Morgenthau, president of the Photomaton company, is shown above dedicating the first machine. He is a former United States Ambaseador to Turkey.
shutter, while the sitter thinks pleasantly of sweetheart, friends, foreign travels or similarly cheerful subjects. In just 20 seconds his eight poses have been recorded, and he has but eight minutes to idle while the machine does the rest. Five 400 -watt projection lamps, well placed, give just the right light on the subject.

An eighth-horsepower motor hums merrily. The strip is cut from a roll which will suffice for 800 more patrons. The exposed strip is fed by rollers into a 9 -compartment tank, where it is quickly developed, "blanched," cleared and toned, with a thorough washing between each process. Electric drying finishes the job, and the sitter is handed a strip faithfully recording his looks, such as they may be.

Every photographer, amateur or professional, is surprised at the simplicity and effectiveness of Josepho's direct-photography. The paper is treated with a sensitive emulsion, in which are millions of microsiopic particles of silver compound. The light rays from the sitter affect the particles, and when the paper is passed through the developer, those most affected are blackest, form-
ing a negative similar to that usually made on transparent film or plate. Dark objects show up white, and all white objects are dark colored.

After a washing, the "negative" now passes into a powerful solution called "blanchite." This dissolves all the black silver away, leaving the silver-compound image. After washing and "clearing" in another solution, the picture is a distinct but faint positive. Compartment No. 8 contain: "seepitone," which changes the pure whits silver compound into a dark brown or black silver, and the strip of pictures is clear and complete, with every shading and item of dptail as in ordinary photography.

Your Photo for $31 / 3$ Cents!

Anatol Josepho's amazing success, first is solving highly intricate problems in photography and mechanics, and second in interesting capital in his idea, proves anew the opportunities awaiting the practical inventor. He realized that it was not enough to have a new idea, or even to devise a working model of a machine designed to replace human hands.

From experience he knew the human being's craving, among all races and all lands, for a permanent record of his face. Josepho's photographic life had likewise taught him the constant demand for utilitarian portrait -for identification cards of all kinds, passports, employment records, expressionstudy, groups, and so on.

Thus, long before he was 32 and had received his "first million" all in one check. he knew that there was a place for a machine which would take pictures while the sitter was "off-guard," develop them swiftly, and hand them over at $31 / 3$ cents each. The success of the Pho-tom-aton (accent on the tom, please) is attested by the rapid installation of 120 machines in this country, Great Britain, South Africa, Shanghai and other lands. But it took Josepho some three years of unremitting work, not the least arduous being the trips from financier to capitalist to financier, before he had a machine and a capitalist who could see the profit in taking the "scare" and most of the cost out of portraits.

As an official of the company pointed out to me, Josepho early appreciated the advantage of eight views from which to choose.

Commercially successful! This picture shows the Photomaton installed in a department store. A large percentage of the sitters are "repeat" customers.

A department for making enlargements is being installed by some of the large departmunt stores in New York City, where the antomatic portrait machine is enormously popular, it is said, with buyers of new hats, new furs, and new "bobs" as well as garments.
"I was born in the central part of Siheria," Joseph told me. "I attended grammar schools, and later studied at the Institute of Enginecring at Omsk. There I became interested in photography. To conlinue my studies in this field I scraped up enough money to go to Berlin.
"But my money soon ran low. I opened a photographic studio, and later moved to Budapest. My studio there made me a living while I experimented. When the World War hroke out I attempted to return to Russia. I was caught at the border and interned under strict military surveillance.
"During the long idle days I conceived the idea of an automatic camera. In the extreme disorder following the Armistice 1 aqain tried to escape to my native land, hut was imprisoned. For weeks I despaired. But then I found that most valuable of assets-a friend.

Risking Death for Freedom

"We managed to bribe a Hungarian offirer. From him we secured forged documents and Hungarian uniforms. On a dark night we scaled the prison camp's barbed-wire walls, dodged the sentries, and a few hours
later boarded a trooptrain bound for Odessa. There we exchanged our uniforms for those of Russian prisoners.
"But the Revolution was under way. As we began to work our way across Bolshevik Russia, we were stopped and thrown into prison once more. But we had risked our lives too often by that time to be deterred. Three nights later we took advantage of a heavy storm and tried another escape. The alarm was given, and our lives hung in the balance as we fought our way past two guards.
"In the nick of time we reached the protecting forests. For eighteen days we traveled only at night. Nearing our homes, we grew careless and traveled by day. We thought our ragged condition would save us, but a second time the Bolsheviks picked us up as suspects and we were herded into a prison at Tchellisbinsk.
"Finally we interested an officer. He swung open the prison doors, even provided us with railroad passes. My friend and I parted, not to meet until years later, in a forei' $\boldsymbol{\eta}$ land of promise. I went to Harbin, in Manchuria, and made money by buying goods in China and selling later at a high profir. But one day, wbile I was on the train, bandits took all my money. Once again I was penniless. But the thought of the automatic camera was always haunting me.
"I went to Shanghai and opened a photograph studio. There I took pictures of the

English colony and the slant-eyed Chinese, while I worked out the details of my invention. By 1923 all I needed was money, and some delicate parts such as optical apparatus. I knew I could get them in America. Like all Europeans I had heard of the fortunes to be made there. So I sold my studio and sailed to San Francisco. For months I wandered about the country, arriving in New York with thirty dollars.

A Cherk for a Million

"The next year was hard. Many times I found myself down to my last dollar. I sought friends willing to sink a few dollars in making a working model and getting patents. I knew it would revolutionize the making of portraits. At last some New York business man gave me enough to open a studio on Broadway. Six months' trial was to prove whether the invention on which I had staked so much for fourteen years, was wanted by the public.
"We soon found out. Two thousand persons a day lined up at the studio and their quarters flowed into the slots. The Broadway crowds proved that my rapid-fire picture machine was a gold mine. I will never forget the meeting where Mr. Henry Morgenthau, who you know was once ambas-
sador to Turkey, handed me a check for one million dollars for my interest in the Photomaton camera.
"This proved to me how generous American business men can be. Il am now able: to work on other ideas I have, to make the necessities and luxuries of life available to every one."

One unexpected result of the immigrant's success, apart from making him an American citizen, is the trust fund he has established to help other inventors. Out of this timely aid may come some of the great inventions on which tomorrow's progress. comfort and happiness will depend.
Thus the self-portrait machine of a pen. niless photographer may hasten the age of the slot-machine salesman. As human hands become increasingly expensive for purely mechanical work, Josepho and his million doubtless will replace them with steel-faced salesmen of everything from shoes to hats, from balloon tires to new limousines, and automatic portraits of ourselves in the chauffeur's seat. If only Josepho and his inventor-friends could make. us a coin-operated greenback machine, and "nickelodeons" that yield bright new nickels instead of devouring them!

WEEDS DESTROYED BY RAILROAD SPRA. MACHINE

AWEED-KILLING spray machine which has recently been designed for railway use is unique in its ability to deliver uniform quantities of chemicals on the roadbed regardless of the speed with which the spray car is traveling. This is accomplished by a self-measuring positive pressure pump driven from the axle of the car, where it is always on the job ready for
action the moment the train moves. The weed-killing chemicals are contained in a tank car connected with the spraying machine by means of pipes. Railroads are required to keep their roadheds free from weeds because of the fire menace they pre. sent in the late fall months.

Conducted by MAHMUD SINGH

The editor of this department of Modern Mechanics magazine, Mahmud Singh, obtained his earliest education in Oriental magic in Delhi, India, where he was initiated into the brotherhood of wandering fakirs. What do you know about magic making? Mahmud Singh if always glad to hear from amateurs who have developed new ways of performing old tricks. Write to him in care of this magazine.

Mystery of the Disappearing Matches

ANOTHER simple after dinmer trick is performed with a box of safety matches. The label of the box must have a heavy htack line running around each end. A small black rubber band is slipped over this line asd is of course invisible at a short distance.

The performer announces that le siol wrap up a few matches in a handkerchief and cause them to vanish. Holding the match box as shown in Fig. 1, he pushes the sliding box out of its cover with the first and second fingers. Taking out a few matches, the magician rolls the rubber hand off the box and around his fingers, which are then curled inward to conceal the band.

The magic maker lays down the match box, picks up the handkerchief with his left hand and spreads it over the right. Ther right thumb is inserted under the rubbor band as shown in the diagram. The left hand places the matches upright in the center of the handkerchief and the right hand grasps them from below. The hand kerchief is turned over and the rubber band is slipped around the matches through the folds of the eloth.

The left hand grasps a corner of the handkerchief, shakes it, and of course fails to dislodge the matches. The handkerchief is emply-as far as the audience is aware.

An added dramatic effect is secured if the magic-maker conceals a second bundle of matches about his person, to be secured later and produced, apparently, from inside the coat of one of the spectators.

A Vanishing Ring Trick

THE amatcur magician is frequently called upon at the conclusion of dinner parties to entertain the guests with a frw samples from his bay of tricks. For surh occasions it is well for the magic maker to have storks of simple and effective illusions which can be presented using "props" to he found on the dinner table. One of the most effective illusions is the vanishing ring trick.

A specially prepared handkerehicf is the only property carried by the performer. In the center of the handkerchief the two ends of a short thread are sewed, forming a loose loop. A cheap finger ring hangs from this loop.

The Empty Glass

A wine glass or similar shallow goblet is borrowed from the table, and alwo a napkin. One of the gursts is asked to lend a ring for the trick. and the magician pretends to put it underneath the handkerchief. Instead, he graspe the ring on the loop from outside the handkerchief and conceals the borrowed
ring between the tips of his thumb and firmt and secund fingers.
The goblet is handed to a second guest who is requested to hold it with one hand while she grasps the handkerchief ring from outside the cloth with the other hand. The magician picks up the napkin by oncorner and shows it to be empty. Then lw gathers the corners together, forming a sack into which he drops the concealed ring. The napkin is handed to a third person with the request that he hold the corners tights together.
The performer then orders the assistant holding the handkerchief over the goblet to drop the ring into the glass. This is done and the tinkle of the ring against the glass is plainly heard. The performer then tapthe glass with a knife, lifts off the handkerchief, and shows the glass empty. Thr ring on the loop is hidden by the folds of the cloth.

The assistant holding the napkin is then asked to open it, producing the borrowed ring which is identified by its owner.

The Overflowing Rice Bowls

ATRICK which is very puzzling to observers is known to professional conjurors as the illusion of the Chinese rice bowls. Two empty bowls, previously shown to the audience, are placed on a table. One is fited mouth down on top of the other, and on removing it a moment later the bowl is found to be overllowing with rice. The lowes howl is again covered, the magician adjusting it, and when separated once more the rice has disappeared and the bowl is overllowing with water.
Three bowls, identical with eaclt other, are required for this trick. The edge of one of the bowls must be perfectly flat. This bowl is filled with water previous to the trick. Over its mouth is fitted a piece of transparent celluloid slightly larger than the circumference of the bowl. If the edge of the bowl is carefully moistened, it can be filled with water and the celluloid dise prevents the liquid from spilling out when lurned upside down.

A large, stout manila bag filled with rice is another accessory. The botom of the hag is dented in, forming a depression shown as " B " in Figure 3. It hides th.

water filled bowl, shown as A. The bowl and its disc are inverted on the tray E, with a thin piece of wood or coin under one edge of the disc to keep it from direct $r \cdots y$. tact with the tray. Unless the bowl is so
supported, there is danger that the disc might stick to the tray when the bowl is raised. A shelf at the back of the magi-ian's table, sliding under it, completes the equipment.

Th. hag of rice. covfring the water filled bowl. is standing on the tray at the begin-

ning of the performance. The back of the tray is close to the edge of the table. The two bowls are shown to the audience and found to be without any preparation.

The performer then places one empty bowl alongside the bag, while he takes the other B ${ }^{1}$ and apparently places it on the other side of the bag while he lifts the sack C., shown in Fig. 4. In reality he places bowl B^{1} on the shelf F, behind the table, nut of sight of the audience. The bowl which he seems to place on the tray is the
water-filled bowl A which has been concealed under the bag. A little practice will enable the performer to carry off this deception perfectly if he remembers that the hag must be lifted at the same moment his hand is out of sight behind it.

The Inverted Bowls

The empty bowl on the tray is now fillad with ricr from the bag. The bowl is carefully leveled off so that the rice is even with the top. The water-filled howl is next picked up and held mouth downward in a slightly slanting position so the audience can not see the disc. It is then placed on top of the rice-filled howl, as shown in Fig 5.

Taking up the two bowls, the performer reverses the ir positions and sets them on the table with the rice bowl uppermost. Slowly he lifts the top bowl and the rice spills out, giving the illusion that both containers are full of grain. The heap of rice in the lower bowl is then leveled off, giving the impression that it is still full of grain. Then, retersing the bowls once more, the disc is

FIGURE removed with the empty bowl and the bottom one shown to be full of water.

The effect is very impressive and inexplicable to the average audience.

The Leaping Coin

AVERY simple but effective illusion is that of the Leaping Coin. The performer attaches a length of hair or of fine black silk to the bottom button of his vest. To the other end of the thread is attached a bit of wax, which is anchored to another button of the vest. The magician borrows a small coin from a member of the audience and unobtrusively attaches the wax to the coin. Next, borrowing a drinking glass, he holds it with his left hand and drops the coin into it.

Carefully swinging the glass in short circles, to give the impression that the movement has something to do with the success of the trick, the performer gradually shoves the glass farther away from him, until the invisible string secured to his vest starts to pull the coin up the side of the tumbler. When it reaches the top of the glass the wax is removed and the coin returned to its owner.

Killing Cotton Plant Pests with Smoke

POISONOLS smoke is the latest weapon employed by science in fighting the destructive boll weevil, which annually costs Southern farmers many millions of dollars through its attacks on cotton plants. A powder mixture is dropped into the hopper of the smoke spraying marhine shown in the picture. This powder is fed into a fire box, where it is ignited, producing a heary thick smoke. The smoke is directed through two pipes projectitr. down alongside the wheels, being driven by a chain-operale 1 blower which scat. ters the fumes on the plents.

The spraying machine shown in the photograph is an adaptation of the familiar Paris green sprayer used by farmers in destroying potato bugs.

Large plantation owners expect to adapt the smoke machine to airplane use so that large areas may be sprayed in a short time.
the weevils from flying out of danger. The cost of protecting cotton in this manner is low, averaging only 20 cents an acre for materials.

BOYS DRIVE TINY RACERS

A baby auto race in which the speed cars were boy-size reproductions of famous jacing machines was recently held at a large Paris speedway. The cars were faithful
 In a Few Months This Delightful New Easy Way!

> Quickest because natural and pleasant. Grateful students say they learn in a fraction of the time old dull methods required. You play direct from the notes. And the cost averages only a few cents a lesson!

LEARNING music is mo longer a difficult lask. If you can reatl the alphabet, yout can now quickly harn to play vour favorite intrument! A delightinl new mithod has made it po-itively casy to treome a capabite performer uithin just a few months. And the cost is only a fraction of what perple used to spend on the old, slow methexls!
You don't need a private teacher, this new way You stuly entirely at home, in, the pritacy if your own room, with no one tor interrupt or ent liarrass yous. And, strange as it may secm, youill enjoy every minute of it-lectause the mew method is aurceable as well as rupid!

No Tricks or Stunts-You Learn from "Regular" Music

You don't have to know the first thing aloum music in order to tegin. Yout learn te play from actual notes, just like hle best musicians do. And almost before yon ralize your progress, you begin playing real tumes and melowics instead of pust scales. There are no trick "numbers", ne" "memory stunts." When you finish the U. S. School of Music course, you can pick up any pirce of regular printed music and understand it: You'll te able to reat music. popular and classic. and play it ifom the noter. Fou'll acyuire a lifelong ability to plase sour friends, amuse yontself, and, if you like, make muncy (musicians are highly paid for their pleasant nork).

Whether yon like the piano, violin, 'cello, organ, saxophone, or any other instrument, you can now learn to play it in an amazingly shont time. By meails of this wonderful newly perfected method reading and playing music is nade almost as simple as reating atoud from a look. You simply can't go wrong. !irst, you are told how a thing is tone, then a picture shoses you how, then you do it yourseli and hear it. No private teacher could make it any clearer. The lessons come to you by mail at regular intercals. They consist of complite printed instructions. diagrams, alt the music you need, and music paper for writing out test exercises. And if anything comes up which is not entircly plain, you can write to your instructor and get a full, prompt. personal reply!

Thank You for Mentioning Modern Mechanics When Writing to Altertisers

 frily mast gee it int eny. Itot
 Wainfapor falmits. Charlso moret-

 manky this oes lasy var.

\$20 a Day Easy:

 Cat and is roile of pithout bolatenipe fobric. Woser esp in

 asd ravefally taffored throagtoosh Dellighted Eameners int and rar

Taylor Cap Mmafacturers Dept 47-L, Cincinnati, Ohto

What Made His Hair Grow?

"Two yotarl ato I was beld all over the top of may head.
${ }^{\text {HI }}$ felt wshamed for people to see my beal. I tried different prepara. tions, but they did if' goort. I semained balif. amill I used Kotalko.
"New halir came alenost immediately and kept on grewing. In a shoot time 1 had smendid bead of heir, which has been per. lect ever since. And tho return of the baldinean."
This happy etatement is by Mr. If. A. Witd. He is but one of the big kerion of asers of Kotalkn whe woltuntarily attest it has ernoped lalling bair. elimimared dandruff or aided new, lunuritht hair growth. KOTALKO is sold by bawy drughime everywhere.

FREE Trial Bor

Te prowe the eficacy of Kotalle, for men'\& women" entil children's heir, the producers are 区iving Proal Baxes. the coupon or write, to
 Please acnd me FitEE Prool Bor of NOTALKO

Name
AAㅔㄹdreat

Men, here is a wonder-the most sensational invention of the agel If you're looking for a rapid fire seller-an item that neta you 100% profft-an item that sells itself to 7 out of 10 men on demenatration-I've sot if $\mathrm{ft} \mathrm{Ve}-\mathrm{Po}-\mathrm{Ad}$, tho amazing new vest pocket adding machinel

Sells for \$2.95-You Malce \$1.65

This most remarkable invention does all the work of for only $\$ 2.951$ It sells on sight to stort pocket and sella for only $\$ 2.951$ It sells on sizht to storekeepers, business men, and everyone who uses flgures, and makes you Kind of firuring in a jifly, yet sitshe-Po-Ad does any up to a billion. shows total visible at all times. Perfectly accurate, Ilphtning fast. Never makes a mistake or gets out of order, Over 100,000 in daily usel

Get Your Machine FREE
Live wire malesmen are dropping everything else and flocking to Vo-Po-Ad. Vo-Po-Ad brints them quick $\$$ money and lots of it Shapiro out in Caltfornia mando $\$ 475$ in one weeki You can "elean up tool Only 10 sales a day in spare time will bring You over $\$ 95.00$
 ins a siteady, substantial income, write at once for full detalls of my MONEY-MAKING PLAN and FREE VE. PO-AD given to new Δ gents. Do it NOW-TODAY!
C. M. CLEARY, Dept. 948

184 W. WASHINGTON STd CHICAGO, FI

No man ar menon nut exespe tho harmifa lafturts of sefanse. Mow trif to haniah onained co bold tobiacco has cive yous. Stim the thoosemende of in whtap

 for irpo Brooll telling hove bogulitily Froe rournolf Cue the cobnowo hatie mod eut Monry Banh Gomentias. THE KEREY INSTTYTE
Bept. B-76e
Dwieht, Itimeis

PATENTS Procured: Trade Merks Recfisteted-A Comprohemalve, experienced, prompt eerfice for the protection and development of youn Idens. Preliminery advice gisdly furnished whout charge. Booklat of thformetion and form for diacloging idea fres on requeat. Irvine L McCathran, 250 Owan BldeWhespiegton, D. C.

Start riath is making real momry－妻0
 Ferk apare llme．Youl can the It，wits ay Prodt Itharlos Plan，Arthur M．Stone
 able thepe bie protits，teo．Inmt thelp wit Iftroalure may amaning new sfooder guit

 gitlon and clearmi siliz in I mithth． In l dis．Now It＇e your 1 mra to share in hese fat prublim

ANYONE—ANYW界TER
CAM M賭胃E BIG MOMEI
 － mend for my molfe，hecmume they nfend up under wrem and trpr innt vothld rifle orilinery mitte Stade of a spefich wev ruinary mimb Made of spriser ury Ind of eloth，Almont imponaltole for ripp
 thon．I ene mell theme sulth rethell for only

 Junt mall letter or a pnat＇－ard，I＇II spad FIREE pversthan
 Aloo mample sulf FREE to worlerw．You don＇t risk perif； The only way you can lome in by tarnles tow iny ofler．go det quirl．Write toilay to C．E．Cumer，Frestilent

THE CONER 1FG，CO．，Dogt．BR－N，Dagton，Ohto．

2／bivinive mo AT EAREAIN PRICES

Nie yers TIT：RABAWTIC，Co．has leen fasess for tie varity of raile sets and sumplies，whith is cffers

 lerfen：to fart，inything jou cas ank fir it bere，ready to mip，at an fuvint in price．Quallty werthandion，
 \rightarrow bie ducounta，
FOUR EAVIMES ARE TMEMEMBOHE Ath any of the cuartir milition Barawlt cuatomere why they treds hers．and ther＇ll tell yod that，＂wallity seme． oldsrat．．our price：ras＇t be bset．That＇e womething to think about ？Quality roases firat－new，Prewh，cood rellinhta merchandtea，but tha price alwaye meant a tromendous anylis．，neverthelots．Got our caltiog and prave this to jourself．Doa＇t mpend e niekel until you © nup nirrinta fisat．
 Por cleaf freoption an elretion mewn，market newe，eif． voar radio net whold hare ocw tuber．Why par se，an： Fitre＇s the chace to get gwaranterd bleh aublity $20 t-A$ troe radlo tubes for only 88 c ersh．Sand ehech，money frill of af ellar c．O．D．Our ble bargain boolk th foll \＆an miler birmaino．
Fow mord this great vadio bargutin boob as wever beform－Mail the compon wew－TODAY．
Nall Thie Coupon for FREE Bargain Book Wene

Adefress

THE BARAWIK COMPANY

By Praped Melhodin Amen m Succes Rirht fres STMRT

 FRIE EOOK Sient wot w BC PROHTS
 2n－ 2－5

Get this FREE Book NOW？

Thank You for Mentioning Modern Mechanics When Writing to Advertisers

What Makw it Ligt?
All guaranteel. Sample 50 eents. Sample Giold oir Siver plated. $\$ 1.00$. Doen the wark of expen. sive 1 .ighers.

Agonds Wriut for Pricts
NEW METHOD MFC. CO. Boz M. Mi-11 Bradford, Pa.

PATENTB

Trade Marks. Copyrighth, Patent Litiqation Handbook with illustrations, 100 mechanical movementa, Sent free on requent.

AL
formerly metmber eramining corpe U. I. Patent Offe
PATENT LAWYER and SOLICITOR 261+A. ovpay bldg.
30 Teaty Experienc* Weahinetor, D. C.

Cest your optics ever these soft-shelled ballads-

They appear wilh a score of others in the

November

the popnlar makazine of Hobo Poetry and Himeor.

Novenimer Iname em Sale Oetelver 30
Send $\$ 1$ (bill or stemps) and Smokehasae Moathly will be mailed to your eddrwas for the next 5 months.

Smohekemes Merthly. Roblimalalo. Mian

So writes W. H. Adams of Obio, Letter Irom Califormia man report \$11275 sales in three months; New Jersey \$400 profits in two months; Pennsylvanig \$3 profita in four months. Lre Shook ses5 gales in one day. Bram bought one outfit April 5 and 7 mitere by August. Iwats
 Wholesale or retail. Big profits either way. No town too small. Business is pleasant, fascinating and dignified. You manufacture
afood product

WE START YOU IN BUSINESS

Forniah senent formulas, raw material and equipmant Litule eapital roquirod; moexperience needed. Bulld Business of Mour Dwn
 there $1 t^{\prime}$ a a delicious food somfertion. Write for
 ent. 8tart now, in your owis tome
Prefits stion a Menth E-sily Possible Send portal for illumtrated book of fate. It coatsine whtheratie letters from othets- hows their plater of bueinems, teils how and plon to atart, and ala ier formation needed. Fris. Write somi

LONG-EAKINS COMPANY
Hut impotront
Sprlingtiold, Ohle

Werking In spare time, J. H. WADE made $\$ 200$ in 2 weeks. A. G. MASON carned $\$ 617$ for a few days" work. YOU, TOO, tan soen qualify for the wonderful spportunities in this fascinating big-pay profession.
CAMERA FREE BOOK tells how GIVEN famous experts teach GIVEN you money-making se-

BE A MOVIE OPERATOR

 Faudeville theatres: crets of photography, in your spare Write for folder. time at home, or in our great New York Studios-how we help you a professional camers. Write today for Rook and Job Chart $\mathbf{N .} \mathbf{Y}$. Institute of Photegraphy, 10 W . $33 \mathrm{rid} 8 \mathrm{Sts}_{\mathrm{s}}$ N. Y.s Dept. I53

WURLIZER

${ }^{* *}$ When I sent for your catalog. I didn*t know a note of musie. A few months
after I bought my Wurlitzerinntrument arter Ibought my Wurlitzerinntrument, orchestri. Now 1 am making $\$ 100$ a week, three times what I made as clerk. I winh everybody knew how easy it fianyone who ean whistle a tane can learn
to play a mosical instrument to play a musical instrument, "ill

Free Trial Easy Payments

You may now have any Wurlitzer Instrument for an ample trial in your own bome. Examine the instrument, note the flne workmanshlp, the full rich tone value and especially how easy it is to play. No obligation to buyno expense for the trial. We make this liberal offer because we want you to try for yourself a genulne Wurlitzer Instrument, the result of 200 years' experience in musical instrument buildIng. Easy payments are arranged to suit your convenience. This is your
opportunity to try a famous Wurlityer opportunity to try a famous Wurlitzer

Illostrates and describes every lnown articies, many of them shown in full colors. All genaine Wurlitaer instruments-buy direct from Werliteer and save money. Special offers 4 n complete outfits,
We also give you our Free Trial, Enar Plyetat Phan, Ne obitipaden.

The Rudolph Wurlitzer Co. Dept. 2198 117 E. 4th Bt., Cleolment, oblo

Name ..
\qquad
Cuy State...............

ITstricmant
Copyright 1928 Thu Rudotph h'wrlizer Co.
Thank You for Mentioning Modern Mechanics When Writing to Advertisers

Forestpangersy
 Men, get Forest Ranger job; \125\$ 200$ month and home furnished; hunt, fish, trap, etc. For further details, write NORTONTINST. ${ }^{1584 \text { Temple Colonado }}$

TOBACCO

Or Snuff Mabit Cured Or No Pay
 Ciparm Cow or 500 oin

 surtien 8 c ,

OLD CARS LOOK MEW IV 30 MINHTES

Now Mirsculous Fhid-net a paint-not a polinh-not a var nish-not a war. Flows on; doia quickly. In wantly reimeres otigind color and humer. A genciend optretops for Servica Stations wanted. Wrive The ReNUZit System, 154 B. Erie Sc., Depr. 744PR Chicmeo, for Frea beve offer

Be Hot Stuff Overnight!

Here's How. Borrow quariermar -1enl ene- Dmaln to the mearent newnntand mind now for the lateut copy of

Capt. Billy's Whiz Bang

64 Podes of the World's Best Humor !1
The NOVEMBER Issue on Sale October 10th

Bend for New Radio BookIt's Free

N': hook-wpl This Dool showi bow to make short wave
 swowis trid twle in D. C. soet A. C gromin. How to build
 matuon on all ore sadas irpilumericis Its fret. Sest for topt today.

KARAS ELECTRIC COMPANY
4081 L, N. Rackwrell Street -tw Chicase

Nama
Sifent and Thembere

City und 5ube.

I mail pay-checks every Saturday to men I appoint in every territory. Work full or spare time making amazing demonstration that will save prospects thousands of dollars.

Demonstrater Furnished

We will fumbh antft for semations? demorisiration. No javestment for storis ONE MINETVG - dediverien or collectlone, Every Teu of thoternera. Hobal demonatra. 1 Bons m dey 피
 woek. No experiore bermenary-we slerw jous laot? one a pronpect. whow in homel, otory,

 10 finlo a moth, Write at once to

Stop Using a Truss

 nits-efiemieo applinatory-made belf-athealva purpesely tolveep the muscle-tonie "PLAAPAO" enntinumusty applied to the affected parta, and te minimise psinful friction and slipping.

No straps, buckles
or apring
ettached.
 Soft as velveteasy to apply--

For almost a quarter of athboat dalay from work, Stacks of aworn, ©o no mulhequient use for a trume A werded Gold Model and Grand Prix. Trial of
"PLapao" will be eent roc aboolatery TiTI No eharge for fo mow or ever. Writo TilcL name on coupose and eend Topay.
Flape Ca, 786 Stmet BIIf., St. Intia, Mo.
2ヘаme.
Address.
4
Return mail will bring Free Trial "PLAPAO"

Thank You for Mentioning Modern Mechanics When Writing to Advertisers

BIG SALE!

22 Cal. Six Shot $\$ 4.99$ Blank Automatic With Box With Box of 100 Cartridges Free

 You need no permit or license to own this newly invented hlah power but absolutely safe and harmless automatic, Positively not a toy. Hullt lilce a real sutomatie same In construction, ap pearance, flnish, welght and every other detall-except that it fires blank cart rides only. Handy for self-defense. Irightens tramps, scares away dogs, handy in the house-a real home protectorFithout the dancer of keeping dangerousflearm home. Play a practleal joke on your frienils. Ideai NOPERMIT at festivals, falrs, plenles, outines, camplng, hiles, OR outdoer sports, ete., ete. Blue steel, case hardenedframe, a duplicate of internationally famous German REQSE
REQURED sutomatic. Makes powerful loud report. Has sif shot marazlive that can be reloaited instantly. Uses 22 CaI blank eartricies. Checkereif Grip. Bos of 100 cartridges free with each sutomatle, Convenlent pocket slze. Send No Money. Pay on dellvery $\$ 4.99$ plus express charges. Fill in coupon below.

$\$ 1.79$

Honest Values Honest Merchandise Honest Prices is our slogan Compare our prices and you will be astonished at our Bargains.
SEND NO MONEY
No Deposit Required
Pay on Delivery
Fill in coupon today BUY FROM US AND SAVE MONEY REMEMBER OVR GOODS ARE ALL GUARANTEED

Sclenes Has Created
the World's Finest Iteproductions of $\$ 500$ DIAMONDSI
At last! A new process is dlscovered. The result - we challenge experts to tell these from $\$ 500$ Dlamonils ! Living fire plays over their diamond-cut fark-epts-dazziling, sparkling, seintillating
Cholee of Sis Rings - $\$ 1.98$ Each.

When shown recently In New York Clty these new Jenkins Diamnonds ereated to senation, will be thrilied! Instant beauty for the hands
GIRTS! MEN! Do not confuse Jenltins Gems with, opilinary "imitations." Nothing has been found to compare with their lasting
beauty. Every stone set beauty. Every stone set
in faman: DFANVILLF in famous DFAUVILLEF mountines
20 yuaranteed
20 years. Put your 20 years. Put your
falth in a ring that won't disappoint yout SEND No MONEYI \$1.94 plus few eents postare when ring you postace whien ring you stalments to pay, Or-
Iting No. 3 and 6 can be had in MENs
der by number. Aet Nowt Fill in Coupon.

JENKINS CORPORATION

Target Practice $\$ 5.34$
Air Automatic expense. shoision. tolay-save money.

Genuine Gold Filleal
 Rings With 10 K .
 Solid Gold Emblems
 \$2.75

All Fraternal Orders

You can now have these rings at our new eut price in any of the following enblems: Mavnle, Odd Fellows, Knights of Colum-
bus. Elks. Eagles. Knights of bus. Elks, Eagles, Knights of Pythlas, Moose, Modern Woodmen, Redmen, ete. All same 10 Kt . Solld Gold Artistleslly designed and engraved einbleta on ruby backerround. State sizo, Send no money. Pay on dellvery,

French "Lucky"
 \$1
 .97 Art Photo View Ring

Famous "actress" wlews. Mort sensational and newest. Set
with world's thost famusu reproduction dlamond with the blue-white sparkle of a $\$ 500$ diamond, Besides, shank has view of French actresses seen through strong magnifying elass, 14 KK . solld gold offect mounting, denend, Fill in coupon below.

With Bor of Ammunition Free.
The New Improved Alr Pistol. No permit requiced. Enilorsed by Pistol Experts as a truy-reliallent for hunting small pame, pistol. Excellent for huntine smian game, blrds, rabbits, etc. The Thal automatic for tarict practice. Heexpense. Shoots lead pellets distance of 40 feet with

A wonderful weapon for Home protection-without the usual danger of having firearms around. Ammunition costs next to nothing-Muilt and looks like a real automatic-Usually sold all over for $\$ 15.00$-arder

Tear off this couron and mail

The Jenkins Corporation, Dept. 276-P-11

621 Broadway, New York, N. Y.
Gentlemen: Kinilly ship me C. O. D. the following advertised artieles. (Clieek articles desired)
-SIx Shot Mank Automatie. $\$ 4.99$
-Target Practice Air Automatic. ... $\$ 5.34$
-Pistot Shape Cigarette Case....... $\$ 1.79$
—Jenlkins Cigarette Lighter Plstol.... $\$ 1.98$

$$
\begin{aligned}
& \text { - Miseellaneous Rings } \\
& \text { Specify size and kind } \\
& \text { desired. }
\end{aligned}
$$

Name
Street
City.
\qquad
\qquad

[^0]: \$100 Weeldy-Yours-At Once. Take orders for America's foremost Ine unnecensary Outht free. Carlton Milis, Dept. 2R, if 4 Fith Ave., New York City.

[^1]: Arrangement of figures on the board is shown in thia diagram.

